Ejemplo n.º 1
0
def decode(z, batch, hparams, is_training=True, reuse=False):
    """Autoencoder decoder network.

  Args:
    z: Tensor. The latent variables.
    batch: NSynthReader batch for pitch information.
    hparams: HParams. Hyperparameters (unused).
    is_training: bool. Whether batch normalization should be computed in
        training mode. Defaults to True.
    reuse: bool. Whether the variable scope should be reused.
        Defaults to False.

  Returns:
    The output of the decoder, i.e. a synthetic x computed from z.
  """
    del hparams
    with tf.variable_scope("decoder", reuse=reuse):
        z_pitch = utils.pitch_embeddings(batch, reuse=reuse)
        z = tf.concat([z, z_pitch], 3)

        h = utils.conv2d(z, [1, 1], [1, 1],
                         1024,
                         is_training,
                         activation_fn=utils.leaky_relu(),
                         transpose=True,
                         batch_norm=True,
                         scope="0")
        h = utils.conv2d(h, [4, 4], [2, 2],
                         512,
                         is_training,
                         activation_fn=utils.leaky_relu(),
                         transpose=True,
                         batch_norm=True,
                         scope="1")
        h = utils.conv2d(h, [4, 4], [2, 2],
                         512,
                         is_training,
                         activation_fn=utils.leaky_relu(),
                         transpose=True,
                         batch_norm=True,
                         scope="2")
        h = utils.conv2d(h, [4, 4], [2, 2],
                         256,
                         is_training,
                         activation_fn=utils.leaky_relu(),
                         transpose=True,
                         batch_norm=True,
                         scope="3")
        h = utils.conv2d(h, [4, 4], [2, 2],
                         256,
                         is_training,
                         activation_fn=utils.leaky_relu(),
                         transpose=True,
                         batch_norm=True,
                         scope="4")
        h = utils.conv2d(h, [4, 4], [2, 2],
                         256,
                         is_training,
                         activation_fn=utils.leaky_relu(),
                         transpose=True,
                         batch_norm=True,
                         scope="5")
        h = utils.conv2d(h, [4, 4], [2, 2],
                         128,
                         is_training,
                         activation_fn=utils.leaky_relu(),
                         transpose=True,
                         batch_norm=True,
                         scope="6")
        h = utils.conv2d(h, [4, 4], [2, 2],
                         128,
                         is_training,
                         activation_fn=utils.leaky_relu(),
                         transpose=True,
                         batch_norm=True,
                         scope="7")
        h = utils.conv2d(h, [5, 5], [2, 2],
                         128,
                         is_training,
                         activation_fn=utils.leaky_relu(),
                         transpose=True,
                         batch_norm=True,
                         scope="8")
        h = utils.conv2d(h, [5, 5], [2, 1],
                         128,
                         is_training,
                         activation_fn=utils.leaky_relu(),
                         transpose=True,
                         batch_norm=True,
                         scope="8_1")

        xhat = utils.conv2d(h, [1, 1], [1, 1],
                            1,
                            is_training,
                            activation_fn=tf.nn.sigmoid,
                            batch_norm=False,
                            scope="mag")
    return xhat
Ejemplo n.º 2
0
def decode(z, batch, hparams, is_training=True, reuse=False):
  """Autoencoder decoder network.

  Args:
    z: Tensor. The latent variables.
    batch: NSynthReader batch for pitch information.
    hparams: HParams. Hyperparameters (unused).
    is_training: bool. Whether batch normalization should be computed in
        training mode. Defaults to True.
    reuse: bool. Whether the variable scope should be reused.
        Defaults to False.

  Returns:
    The output of the decoder, i.e. a synthetic x computed from z.
  """
  del hparams
  with tf.variable_scope("decoder", reuse=reuse):
    z_pitch = utils.pitch_embeddings(batch, reuse=reuse)
    z = tf.concat([z, z_pitch], 3)

    h = utils.conv2d(
        z, [1, 1], [1, 1],
        1024,
        is_training,
        activation_fn=utils.leaky_relu(),
        transpose=True,
        batch_norm=True,
        scope="0")
    h = utils.conv2d(
        h, [4, 4], [2, 2],
        512,
        is_training,
        activation_fn=utils.leaky_relu(),
        transpose=True,
        batch_norm=True,
        scope="1")
    h = utils.conv2d(
        h, [4, 4], [2, 2],
        512,
        is_training,
        activation_fn=utils.leaky_relu(),
        transpose=True,
        batch_norm=True,
        scope="2")
    h = utils.conv2d(
        h, [4, 4], [2, 2],
        256,
        is_training,
        activation_fn=utils.leaky_relu(),
        transpose=True,
        batch_norm=True,
        scope="3")
    h = utils.conv2d(
        h, [4, 4], [2, 2],
        256,
        is_training,
        activation_fn=utils.leaky_relu(),
        transpose=True,
        batch_norm=True,
        scope="4")
    h = utils.conv2d(
        h, [4, 4], [2, 2],
        256,
        is_training,
        activation_fn=utils.leaky_relu(),
        transpose=True,
        batch_norm=True,
        scope="5")
    h = utils.conv2d(
        h, [4, 4], [2, 2],
        128,
        is_training,
        activation_fn=utils.leaky_relu(),
        transpose=True,
        batch_norm=True,
        scope="6")
    h = utils.conv2d(
        h, [4, 4], [2, 2],
        128,
        is_training,
        activation_fn=utils.leaky_relu(),
        transpose=True,
        batch_norm=True,
        scope="7")
    h = utils.conv2d(
        h, [5, 5], [2, 2],
        128,
        is_training,
        activation_fn=utils.leaky_relu(),
        transpose=True,
        batch_norm=True,
        scope="8")
    h = utils.conv2d(
        h, [5, 5], [2, 1],
        128,
        is_training,
        activation_fn=utils.leaky_relu(),
        transpose=True,
        batch_norm=True,
        scope="8_1")

    xhat = utils.conv2d(
        h, [1, 1], [1, 1],
        1,
        is_training,
        activation_fn=tf.nn.sigmoid,
        batch_norm=False,
        scope="mag")
  return xhat