Ejemplo n.º 1
0
def _rotate_local(
    scene_node: SceneNode, theta: float, axis: int, constraint: Optional[float] = None
):
    if constraint is not None:
        rotation = scene_node.rotation

        if abs(float(rotation.angle())) > 0:
            ref_vector = mn.Vector3()
            ref_vector[axis] = 1

            if mn.math.angle(ref_vector, rotation.axis().normalized()) > mn.Rad(1e-3):
                raise RuntimeError(
                    "Constrained look only works for a singular look action type"
                )

        look_vector = rotation.transform_vector(FRONT)
        if axis == 0:
            look_angle = mn.Rad(np.arctan2(look_vector[1], -look_vector[2]))
        elif axis == 1:
            look_angle = -mn.Rad(np.arctan2(look_vector[0], -look_vector[2]))

        new_angle = look_angle + mn.Deg(theta)

        constraint = mn.Deg(constraint)

        if new_angle > constraint:
            theta = constraint - look_angle
        elif new_angle < -constraint:
            theta = -constraint - look_angle

    _rotate_local_fns[axis](scene_node, mn.Deg(theta))
    scene_node.rotation = scene_node.rotation.normalized()
Ejemplo n.º 2
0
def _noisy_action_impl(
    scene_node: hsim.SceneNode,
    translate_amount: float,
    rotate_amount: float,
    multiplier: float,
    model: MotionNoiseModel,
):
    # Perform the action in the coordinate system of the node
    transform = scene_node.transformation
    move_ax = -transform[_Z_AXIS].xyz
    perp_ax = transform[_X_AXIS].xyz

    # + EPS to make sure 0 is positive.  We multiply the mean by the sign of the translation
    # as otherwise forward would overshoot on average and backward would undershoot, while
    # both should overshoot
    translation_noise = multiplier * np.random.multivariate_normal(
        np.sign(translate_amount + 1e-8) * model.linear.mean, model.linear.cov)
    scene_node.translate_local(move_ax *
                               (translate_amount + translation_noise[0]) +
                               perp_ax * translation_noise[1])

    # Same deal with rotation about + EPS and why we multiply by the sign
    rot_noise = multiplier * np.random.multivariate_normal(
        np.sign(rotate_amount + 1e-8) * model.rotation.mean,
        model.rotation.cov)

    scene_node.rotate_y_local(mn.Deg(rotate_amount) + mn.Rad(rot_noise[0]))
    scene_node.rotation = scene_node.rotation.normalized()
Ejemplo n.º 3
0
def test_constrainted(
    scene_graph, control_name, control_axis, actuation_amount, actuation_constraint
):
    initial_look_angle = mn.Deg(
        np.random.uniform(-actuation_constraint, actuation_constraint)
    )
    rotation_vector = mn.Vector3()
    rotation_vector[control_axis] = 1
    initial_rotation = mn.Quaternion.rotation(
        mn.Rad(initial_look_angle), rotation_vector
    )

    node = scene_graph.get_root_node().create_child()
    node.rotation = initial_rotation

    spec = habitat_sim.agent.controls.ActuationSpec(
        actuation_amount, actuation_constraint
    )
    habitat_sim.registry.get_move_fn(control_name)(node, spec)

    expected_angle = initial_look_angle + mn.Deg(
        -actuation_amount
        if control_name in {"look_down", "look_right"}
        else actuation_amount
    )

    if expected_angle > mn.Deg(actuation_constraint):
        expected_angle = mn.Deg(actuation_constraint)
    elif expected_angle < mn.Deg(-actuation_constraint):
        expected_angle = mn.Deg(-actuation_constraint)

    final_rotation = node.rotation

    look_vector = final_rotation.transform_vector(habitat_sim.geo.FRONT)
    if control_axis == 0:
        look_angle = mn.Deg(mn.Rad(np.arctan2(look_vector[1], -look_vector[2])))
    elif control_axis == 1:
        look_angle = -mn.Deg(mn.Rad(np.arctan2(look_vector[0], -look_vector[2])))

    assert np.abs(float(expected_angle - look_angle)) < 1e-1
def _noisy_action_impl(
    scene_node: hsim.SceneNode,
    translate_amount: float,
    rotate_amount: float,
    multiplier: float,
    model: MotionNoiseModel,
    motion_type: str,
):
    # Perform the action in the coordinate system of the node
    transform = scene_node.transformation
    move_ax = -transform[_Z_AXIS].xyz
    perp_ax = transform[_X_AXIS].xyz

    if motion_type == "rotational":
        translation_noise = multiplier * model.linear.sample()
    else:
        # The robot will always move a little bit.  This has to be defined based on the intended actuation
        # as otherwise small rotation amounts would be invalid.  However, pretty quickly, we'll
        # get to the truncation of 3 sigma
        trunc = [(-0.95 * np.abs(translate_amount), None), None]

        translation_noise = multiplier * model.linear.sample(trunc)

    # + EPS to make sure 0 is positive.  We multiply by the sign of the translation
    # as otherwise forward would overshoot on average and backward would undershoot, while
    # both should overshoot
    translation_noise *= np.sign(translate_amount + 1e-8)

    scene_node.translate_local(
        move_ax * (translate_amount + translation_noise[0])
        + perp_ax * translation_noise[1]
    )

    if motion_type == "linear":
        rot_noise = multiplier * model.rotation.sample()
    else:
        # The robot will always turn a little bit.  This has to be defined based on the intended actuation
        # as otherwise small rotation amounts would be invalid.  However, pretty quickly, we'll
        # get to the truncation of 3 sigma
        trunc = [(-0.95 * np.abs(np.deg2rad(rotate_amount)), None)]

        rot_noise = multiplier * model.rotation.sample(trunc)

    # Same deal with rotation about + EPS and why we multiply by the sign
    rot_noise *= np.sign(rotate_amount + 1e-8)

    scene_node.rotate_y_local(mn.Deg(rotate_amount) + mn.Rad(rot_noise))
    scene_node.rotation = scene_node.rotation.normalized()
def place_robot_from_agent(
    sim: habitat_sim.Simulator,
    robot: habitat_sim._ext.habitat_sim_bindings.ManagedBulletArticulatedObject,
    local_base_pos: list,
    orientation_vector: list,
    angle_correction: float,
) -> None:
    """Moves robot to reasonable transformation relative to agent."""
    local_base_pos = np.array(local_base_pos)
    # place the robot root state relative to the agent
    agent_transform = sim.agents[0].scene_node.transformation_matrix()
    base_transform = mn.Matrix4.rotation(
        mn.Rad(angle_correction), mn.Vector3(*orientation_vector)
    )
    base_transform.translation = agent_transform.transform_point(local_base_pos)
    robot.transformation = base_transform
Ejemplo n.º 6
0
agent_state = sim.agents[0].state
agent_state.position = np.array([-1.97496, 0.072447, -2.0894])
agent_state.rotation = ut.quat_from_coeffs([0, -1, 0, 0])
sim.agents[0].set_state(agent_state)

# load the target objects
cheezit_handle = obj_attr_mgr.get_template_handles("cheezit")[0]
# create range from center and half-extent
target_zone = mn.Range3D.from_center(
    mn.Vector3(-2.07496, 1.07245, -0.2894), mn.Vector3(0.5, 0.05, 0.1)
)
num_targets = 9  # @param{type:"integer"}
for _target in range(num_targets):
    obj_id = sim.add_object_by_handle(cheezit_handle)
    # rotate boxes off of their sides
    rotate = mn.Quaternion.rotation(mn.Rad(-mn.math.pi_half), mn.Vector3(1.0, 0, 0))
    sim.set_rotation(rotate, obj_id)
    # sample state from the target zone
    if not sample_object_state(sim, obj_id, False, True, 100, target_zone):
        sim.remove_object(obj_id)


show_target_zone = False  # @param{type:"boolean"}
if show_target_zone:
    # Get and modify the wire cube template from the range
    cube_handle = obj_attr_mgr.get_template_handles("cubeWireframe")[0]
    cube_template_cpy = obj_attr_mgr.get_template_by_handle(cube_handle)
    cube_template_cpy.scale = target_zone.size()
    cube_template_cpy.is_collidable = False
    # Register the modified template under a new name.
    obj_attr_mgr.register_template(cube_template_cpy, "target_zone")
Ejemplo n.º 7
0
# setup agent state manually to face the bar
agent_state = sim.agents[0].state
agent_state.position = np.array([-1.97496, 0.072447, -2.0894])
agent_state.rotation = ut.quat_from_coeffs([0, -1, 0, 0])
sim.agents[0].set_state(agent_state)

# load the target objects
cheezit_handle = obj_attr_mgr.get_template_handles("cheezit")[0]
# create range from center and half-extent
target_zone = mn.Range3D.from_center(mn.Vector3(-2.07496, 1.07245, -0.2894),
                                     mn.Vector3(0.5, 0.05, 0.1))
num_targets = 9  # @param{type:"integer"}
for target in range(num_targets):
    obj_id = sim.add_object_by_handle(cheezit_handle)
    # rotate boxes off of their sides
    rotate = mn.Quaternion.rotation(mn.Rad(-mn.math.pi_half),
                                    mn.Vector3(1.0, 0, 0))
    sim.set_rotation(rotate, obj_id)
    # sample state from the target zone
    if not sample_object_state(sim, obj_id, False, True, 100, target_zone):
        sim.remove_object(obj_id)

show_target_zone = False  # @param{type:"boolean"}
if show_target_zone:
    # Get and modify the wire cube template from the range
    cube_handle = obj_attr_mgr.get_template_handles("cubeWireframe")[0]
    cube_template_cpy = obj_attr_mgr.get_template_by_handle(cube_handle)
    cube_template_cpy.scale = target_zone.size()
    cube_template_cpy.is_collidable = False
    # Register the modified template under a new name.
    obj_attr_mgr.register_template(cube_template_cpy, "target_zone")
Ejemplo n.º 8
0
def test_velocity_control():
    cfg_settings = examples.settings.default_sim_settings.copy()
    cfg_settings["scene"] = "NONE"
    cfg_settings["enable_physics"] = True
    hab_cfg = examples.settings.make_cfg(cfg_settings)
    with habitat_sim.Simulator(hab_cfg) as sim:
        sim.set_gravity(np.array([0, 0, 0.0]))
        obj_mgr = sim.get_object_template_manager()

        template_path = osp.abspath("data/test_assets/objects/nested_box")
        template_ids = obj_mgr.load_object_configs(template_path)
        object_template = obj_mgr.get_template_by_ID(template_ids[0])
        object_template.linear_damping = 0.0
        object_template.angular_damping = 0.0
        obj_mgr.register_template(object_template)

        obj_handle = obj_mgr.get_template_handle_by_ID(template_ids[0])

        for iteration in range(2):
            sim.reset()
            object_id = sim.add_object_by_handle(obj_handle)
            vel_control = sim.get_object_velocity_control(object_id)

            if iteration == 0:
                if (sim.get_object_motion_type(object_id) !=
                        habitat_sim.physics.MotionType.DYNAMIC):
                    # Non-dynamic simulator in use. Skip 1st pass.
                    sim.remove_object(object_id)
                    continue
            elif iteration == 1:
                # test KINEMATIC
                sim.set_object_motion_type(
                    habitat_sim.physics.MotionType.KINEMATIC, object_id)

            # test global velocities
            vel_control.linear_velocity = np.array([1.0, 0, 0])
            vel_control.angular_velocity = np.array([0, 1.0, 0])
            vel_control.controlling_lin_vel = True
            vel_control.controlling_ang_vel = True

            while sim.get_world_time() < 1.0:
                # NOTE: stepping close to default timestep to get near-constant velocity control of DYNAMIC bodies.
                sim.step_physics(0.00416)

            ground_truth_pos = sim.get_world_time(
            ) * vel_control.linear_velocity
            assert np.allclose(sim.get_translation(object_id),
                               ground_truth_pos,
                               atol=0.01)
            ground_truth_q = mn.Quaternion([[0, 0.480551, 0], 0.876967])
            angle_error = mn.math.angle(ground_truth_q,
                                        sim.get_rotation(object_id))
            assert angle_error < mn.Rad(0.005)

            sim.reset()

            # test local velocities (turn in a half circle)
            vel_control.lin_vel_is_local = True
            vel_control.ang_vel_is_local = True
            vel_control.linear_velocity = np.array([0, 0, -math.pi])
            vel_control.angular_velocity = np.array([math.pi * 2.0, 0, 0])

            sim.set_translation(np.array([0, 0, 0.0]), object_id)
            sim.set_rotation(mn.Quaternion(), object_id)

            while sim.get_world_time() < 0.5:
                # NOTE: stepping close to default timestep to get near-constant velocity control of DYNAMIC bodies.
                sim.step_physics(0.008)

            print(sim.get_world_time())

            # NOTE: explicit integration, so expect some error
            ground_truth_q = mn.Quaternion([[1.0, 0, 0], 0])
            print(sim.get_translation(object_id))
            assert np.allclose(sim.get_translation(object_id),
                               np.array([0, 1.0, 0.0]),
                               atol=0.07)
            angle_error = mn.math.angle(ground_truth_q,
                                        sim.get_rotation(object_id))
            assert angle_error < mn.Rad(0.05)

            sim.remove_object(object_id)
Ejemplo n.º 9
0
remove_all_objects(sim)
observations = []
capsule_template = prim_templates_mgr.get_default_capsule_template(is_wireframe = False)
capsule_template_handle = capsule_template.handle
id_1 = sim.add_object_by_handle(capsule_template_handle)
sim.set_object_motion_type(habitat_sim.physics.MotionType.KINEMATIC, id_1)
sim.set_translation(np.array([0.8, 0, 0.5]), id_1)

start_time = sim.get_world_time()
dt = 2
while sim.get_world_time() < start_time + dt:
    # manually control the object's kinematic state
    sim.set_translation(sim.get_translation(id_1) + np.array([0, 0, 0.01]), id_1)
    sim.set_rotation(
        mn.Quaternion.rotation(mn.Rad(0.025), np.array([0, 0, -1.0]))
        * sim.get_rotation(id_1),
        id_1,
    )
    sim.step_physics(1.0 / 60.0)
    observations.append(sim.get_sensor_observations())

if make_video:
    vut.make_video(
        observations,
        "semantic_camera_1stperson",
        "semantic",
        output_path + "3_kinematic_update_z",
        open_vid=show_video,
    )
# %%
Ejemplo n.º 10
0
    observations = []
    obj_templates_mgr.load_configs(str(os.path.join(data_path, "objects")))
    # search for an object template by key sub-string
    cheezit_template_handle = obj_templates_mgr.get_template_handles(
        "data/objects/cheezit"
    )[0]
    box_positions = [
        np.array([2.39, -0.37, 0]),
        np.array([2.39, -0.64, 0]),
        np.array([2.39, -0.91, 0]),
        np.array([2.39, -0.64, -0.22]),
        np.array([2.39, -0.64, 0.22]),
    ]
    box_orientation = mn.Quaternion.rotation(
        mn.Rad(math.pi / 2.0), np.array([-1.0, 0, 0])
    )
    # instance and place the boxes
    box_ids = []
    for b in range(5):
        box_ids.append(sim.add_object_by_handle(cheezit_template_handle))
        sim.set_translation(box_positions[b], box_ids[b])
        sim.set_rotation(box_orientation, box_ids[b])

    # get the object's initialization attributes (all boxes initialized with same mass)
    object_init_template = sim.get_object_initialization_template(box_ids[0])
    # anti-gravity force f=m(-g)
    anti_grav_force = -1.0 * sim.get_gravity() * object_init_template.mass

    # throw a sphere at the boxes from the agent position
    sphere_template = obj_templates_mgr.get_template_by_ID(sphere_template_id)
Ejemplo n.º 11
0
    # [kinematic_update]
    observations = []

    clamp_template_handle = obj_templates_mgr.get_template_handles(
        "data/objects/largeclamp")[0]
    clamp_obj = rigid_obj_mgr.add_object_by_handle(clamp_template_handle)
    clamp_obj.motion_type = habitat_sim.physics.MotionType.KINEMATIC
    clamp_obj.translation = [0.8, 0.0, 0.5]

    start_time = sim.get_world_time()
    dt = 1.0
    while sim.get_world_time() < start_time + dt:
        # manually control the object's kinematic state
        clamp_obj.translation = clamp_obj.translation + [0.0, 0.0, 0.01]
        clamp_obj.rotation = (
            mn.Quaternion.rotation(mn.Rad(0.05), [-1.0, 0.0, 0.0]) *
            clamp_obj.rotation)
        sim.step_physics(1.0 / 60.0)
        observations.append(sim.get_sensor_observations())

    if make_video:
        vut.make_video(
            observations,
            "rgba_camera_1stperson",
            "color",
            output_path + "kinematic_update",
            open_vid=show_video,
        )

    # [/kinematic_update]
    # %%
Ejemplo n.º 12
0
build_widget_ui(sim.metadata_mediator)

# %% [markdown]
# ## Load the Select Scene and Simulate!
# This cell will load the scene selected above, simulate, and produce a visualization.

# %%
global selected_scene
if sim_settings["scene"] != selected_scene:
    sim_settings["scene"] = selected_scene
    make_simulator_from_settings(sim_settings)

observations = []
start_time = sim.get_world_time()
while sim.get_world_time() < start_time + 4.0:
    sim.agents[0].scene_node.rotate(mn.Rad(mn.math.pi_half / 60.0),
                                    mn.Vector3(0, 1, 0))
    sim.step_physics(1.0 / 60.0)
    if make_video:
        observations.append(sim.get_sensor_observations())

# video rendering of carousel view
video_prefix = "ReplicaCAD_scene_view"
if make_video:
    vut.make_video(
        observations,
        "color_sensor_1st_person",
        "color",
        output_path + video_prefix,
        open_vid=show_video,
        video_dims=[1280, 720],
 def base_rot(self, rotation_y_rad: float):
     self.sim_obj.rotation = mn.Quaternion.rotation(
         mn.Rad(rotation_y_rad), mn.Vector3(0, 1, 0)
     )
Ejemplo n.º 14
0
 def base_transformation(self):
     add_rot = mn.Matrix4.rotation(mn.Rad(-np.pi / 2), mn.Vector3(1.0, 0, 0))
     return self.sim_obj.transformation @ add_rot
Ejemplo n.º 15
0
sphere_template_handle = sphere_template.handle

#add 5 cubes 
cheezit_template = prim_templates_mgr.get_default_cylinder_template(is_wireframe = False)
cheezit_template_handle = cheezit_template.handle
cheezit_template.half_length = 2.5

box_positions = [
    np.array([2.39, -0.37, 0]),
    np.array([2.39, -0.64, 0]),
    np.array([2.39, -0.91, 0]),
    np.array([2.39, -0.64, -0.22]),
    np.array([2.39, -0.64, 0.22]),
]
box_orientation = mn.Quaternion.rotation(
    mn.Rad(math.pi / 2.0), np.array([-1.0, 0, 0]))
print("box_orientation: ",box_orientation)
# instance and place the boxes
box_ids = []
for b in range(5):
    box_ids.append(sim.add_object_by_handle(cheezit_template_handle))
    sim.set_translation(box_positions[b], box_ids[b])
    sim.set_rotation(box_orientation, box_ids[b])

# get the object's initialization attributes (all boxes initialized with same mass)
object_init_template = sim.get_object_initialization_template(box_ids[0])
# anti-gravity force f=m(-g)
anti_grav_force = -1.0 * sim.get_gravity() * object_init_template.mass

# throw a sphere at the boxes from the agent position
sphere_template_id = sphere_template.ID
Ejemplo n.º 16
0
def sample_object_state(
    sim, object_id, from_navmesh=True, maintain_object_up=True, max_tries=100, bb=None
):
    # check that the object is not STATIC
    if sim.get_object_motion_type(object_id) is habitat_sim.physics.MotionType.STATIC:
        print("sample_object_state : Object is STATIC, aborting.")
    if from_navmesh:
        if not sim.pathfinder.is_loaded:
            print("sample_object_state : No pathfinder, aborting.")
            return False
    elif not bb:
        print(
            "sample_object_state : from_navmesh not specified and no bounding box provided, aborting."
        )
        return False
    tries = 0
    valid_placement = False
    # Note: following assumes sim was not reconfigured without close
    scene_collision_margin = stage_attr_mgr.get_template_by_ID(0).margin
    while not valid_placement and tries < max_tries:
        tries += 1
        # initialize sample location to random point in scene bounding box
        sample_location = np.array([0, 0, 0])
        if from_navmesh:
            # query random navigable point
            sample_location = sim.pathfinder.get_random_navigable_point()
        else:
            sample_location = np.random.uniform(bb.min, bb.max)
        # set the test state
        sim.set_translation(sample_location, object_id)
        if maintain_object_up:
            # random rotation only on the Y axis
            y_rotation = mn.Quaternion.rotation(
                mn.Rad(random.random() * 2 * math.pi), mn.Vector3(0, 1.0, 0)
            )
            sim.set_rotation(y_rotation * sim.get_rotation(object_id), object_id)
        else:
            # unconstrained random rotation
            sim.set_rotation(ut.random_quaternion(), object_id)

        # raise object such that lowest bounding box corner is above the navmesh sample point.
        if from_navmesh:
            obj_node = sim.get_object_scene_node(object_id)
            xform_bb = habitat_sim.geo.get_transformed_bb(
                obj_node.cumulative_bb, obj_node.transformation
            )
            # also account for collision margin of the scene
            y_translation = mn.Vector3(
                0, xform_bb.size_y() / 2.0 + scene_collision_margin, 0
            )
            sim.set_translation(
                y_translation + sim.get_translation(object_id), object_id
            )

        # test for penetration with the environment
        if not sim.contact_test(object_id):
            valid_placement = True

    if not valid_placement:
        return False
    return True
Ejemplo n.º 17
0
    try_to_make_valid = True  # @param {type:"boolean"}
    if set_agent_state:
        pos_x = 0  # @param {type:"number"}
        pos_y = 0  # @param {type:"number"}
        pos_z = 0.0  # @param {type:"number"}
        # @markdown Y axis rotation (radians):
        orientation = 1.56  # @param {type:"number"}
        agent_state.position = np.array([pos_x, pos_y, pos_z])
        if try_to_make_valid:
            snapped_point = np.array(sim.pathfinder.snap_point(agent_state.position))
            if not np.isnan(np.sum(snapped_point)):
                print("Successfully snapped point to: " + str(snapped_point))
                agent_state.position = snapped_point
    if set_agent_state or set_random_valid_state:
        agent_state.rotation = utils.quat_from_magnum(
            mn.Quaternion.rotation(-mn.Rad(orientation), mn.Vector3(0, 1.0, 0))
        )
        sim.agents[0].set_state(agent_state)

    agent_state = sim.agents[0].get_state()
    print("Agent state: " + str(agent_state))
    print(" position = " + str(agent_state.position))
    print(" rotation = " + str(agent_state.rotation))
    print(" orientation (about Y) = " + str(orientation))

    observations = sim.get_sensor_observations()
    rgb = observations["color_sensor"]
    semantic = observations["semantic_sensor"]
    depth = observations["depth_sensor"]

    if display:
Ejemplo n.º 18
0
def main(make_video=True, show_video=True):
    if make_video:
        if not os.path.exists(output_path):
            os.mkdir(output_path)

    # [initialize]
    # create the simulator
    cfg = make_configuration()
    sim = habitat_sim.Simulator(cfg)
    agent_transform = place_agent(sim)

    # [/initialize]

    # [basics]

    # load some object templates from configuration files
    sphere_template_id = sim.load_object_configs(
        str(os.path.join(data_path, "test_assets/objects/sphere")))[0]

    # add an object to the scene
    id_1 = sim.add_object(sphere_template_id)
    sim.set_translation(np.array([2.50, 0, 0.2]), id_1)

    # simulate
    observations = simulate(sim, dt=1.5, get_frames=make_video)

    if make_video:
        make_video_cv2(observations, prefix="sim_basics", open_vid=show_video)

    # [/basics]

    remove_all_objects(sim)

    # [dynamic_control]

    observations = []
    # search for an object template by key sub-string
    cheezit_template_handle = sim.get_template_handles(
        "data/objects/cheezit")[0]
    box_positions = [
        np.array([2.39, -0.37, 0]),
        np.array([2.39, -0.64, 0]),
        np.array([2.39, -0.91, 0]),
        np.array([2.39, -0.64, -0.22]),
        np.array([2.39, -0.64, 0.22]),
    ]
    box_orientation = mn.Quaternion.rotation(mn.Rad(math.pi / 2.0),
                                             np.array([-1.0, 0, 0]))
    # instance and place the boxes
    box_ids = []
    for b in range(5):
        box_ids.append(sim.add_object_by_handle(cheezit_template_handle))
        sim.set_translation(box_positions[b], box_ids[b])
        sim.set_rotation(box_orientation, box_ids[b])

    # get the object's initialization attributes (all boxes initialized with same mass)
    object_init_template = sim.get_object_initialization_template(box_ids[0])
    # anti-gravity force f=m(-g)
    anti_grav_force = -1.0 * sim.get_gravity() * object_init_template.get_mass(
    )

    # throw a sphere at the boxes from the agent position
    sphere_template = sim.get_object_template(sphere_template_id)
    sphere_template.set_scale(np.array([0.5, 0.5, 0.5]))
    sphere_id = sim.add_object(sphere_template_id)
    sim.set_translation(
        sim.agents[0].get_state().position + np.array([0, 1.0, 0]), sphere_id)
    # get the vector from the sphere to a box
    target_direction = sim.get_translation(
        box_ids[0]) - sim.get_translation(sphere_id)
    # apply an initial velocity for one step
    sim.set_linear_velocity(target_direction * 5, sphere_id)
    sim.set_angular_velocity(np.array([0, -1.0, 0]), sphere_id)

    start_time = sim.get_world_time()
    dt = 3.0
    while sim.get_world_time() < start_time + dt:
        # set forces/torques before stepping the world
        for box_id in box_ids:
            sim.apply_force(anti_grav_force, np.array([0, 0.0, 0]), box_id)
            sim.apply_torque(np.array([0, 0.01, 0]), box_id)
        sim.step_physics(1.0 / 60.0)
        observations.append(sim.get_sensor_observations())

    if make_video:
        make_video_cv2(observations,
                       prefix="dynamic_control",
                       open_vid=show_video)

    # [/dynamic_control]

    remove_all_objects(sim)

    # [kinematic_interactions]

    chefcan_template_handle = sim.get_template_handles(
        "data/objects/chefcan")[0]
    id_1 = sim.add_object_by_handle(chefcan_template_handle)
    sim.set_translation(np.array([2.4, -0.64, 0]), id_1)
    # set one object to kinematic
    sim.set_object_motion_type(habitat_sim.physics.MotionType.KINEMATIC, id_1)

    # drop some dynamic objects
    id_2 = sim.add_object_by_handle(chefcan_template_handle)
    sim.set_translation(np.array([2.4, -0.64, 0.28]), id_2)
    id_3 = sim.add_object_by_handle(chefcan_template_handle)
    sim.set_translation(np.array([2.4, -0.64, -0.28]), id_3)
    id_4 = sim.add_object_by_handle(chefcan_template_handle)
    sim.set_translation(np.array([2.4, -0.3, 0]), id_4)

    # simulate
    observations = simulate(sim, dt=1.5, get_frames=True)

    if make_video:
        make_video_cv2(observations,
                       prefix="kinematic_interactions",
                       open_vid=show_video)

    # [/kinematic_interactions]

    remove_all_objects(sim)

    # [kinematic_update]
    observations = []

    clamp_template_handle = sim.get_template_handles(
        "data/objects/largeclamp")[0]
    id_1 = sim.add_object_by_handle(clamp_template_handle)
    sim.set_object_motion_type(habitat_sim.physics.MotionType.KINEMATIC, id_1)
    sim.set_translation(np.array([0.8, 0, 0.5]), id_1)

    start_time = sim.get_world_time()
    dt = 1.0
    while sim.get_world_time() < start_time + dt:
        # manually control the object's kinematic state
        sim.set_translation(
            sim.get_translation(id_1) + np.array([0, 0, 0.01]), id_1)
        sim.set_rotation(
            mn.Quaternion.rotation(mn.Rad(0.05), np.array([-1.0, 0, 0])) *
            sim.get_rotation(id_1),
            id_1,
        )
        sim.step_physics(1.0 / 60.0)
        observations.append(sim.get_sensor_observations())

    if make_video:
        make_video_cv2(observations,
                       prefix="kinematic_update",
                       open_vid=show_video)

    # [/kinematic_update]

    # [velocity_control]

    # get object VelocityControl structure and setup control
    vel_control = sim.get_object_velocity_control(id_1)
    vel_control.linear_velocity = np.array([0, 0, -1.0])
    vel_control.angular_velocity = np.array([4.0, 0, 0])
    vel_control.controlling_lin_vel = True
    vel_control.controlling_ang_vel = True

    observations = simulate(sim, dt=1.0, get_frames=True)

    # reverse linear direction
    vel_control.linear_velocity = np.array([0, 0, 1.0])

    observations += simulate(sim, dt=1.0, get_frames=True)

    make_video_cv2(observations, prefix="velocity_control", open_vid=True)

    # [/velocity_control]

    # [local_velocity_control]

    vel_control.linear_velocity = np.array([0, 0, 2.3])
    vel_control.angular_velocity = np.array([-4.3, 0.0, 0])
    vel_control.lin_vel_is_local = True
    vel_control.ang_vel_is_local = True

    observations = simulate(sim, dt=1.5, get_frames=True)

    # video rendering
    make_video_cv2(observations,
                   prefix="local_velocity_control",
                   open_vid=True)

    # [/local_velocity_control]

    # [embodied_agent]

    # load the lobot_merged asset
    locobot_template_id = sim.load_object_configs(
        str(os.path.join(data_path, "objects/locobot_merged")))[0]

    # add robot object to the scene with the agent/camera SceneNode attached
    id_1 = sim.add_object(locobot_template_id, sim.agents[0].scene_node)
    sim.set_translation(np.array([1.75, -1.02, 0.4]), id_1)

    vel_control = sim.get_object_velocity_control(id_1)
    vel_control.linear_velocity = np.array([0, 0, -1.0])
    vel_control.angular_velocity = np.array([0.0, 2.0, 0])

    # simulate robot dropping into place
    observations = simulate(sim, dt=1.5, get_frames=make_video)

    vel_control.controlling_lin_vel = True
    vel_control.controlling_ang_vel = True
    vel_control.lin_vel_is_local = True
    vel_control.ang_vel_is_local = True

    # simulate forward and turn
    observations += simulate(sim, dt=1.0, get_frames=make_video)

    vel_control.controlling_lin_vel = False
    vel_control.angular_velocity = np.array([0.0, 1.0, 0])

    # simulate turn only
    observations += simulate(sim, dt=1.5, get_frames=make_video)

    vel_control.angular_velocity = np.array([0.0, 0.0, 0])
    vel_control.controlling_lin_vel = True
    vel_control.controlling_ang_vel = True

    # simulate forward only with damped angular velocity (reset angular velocity to 0 after each step)
    observations += simulate(sim, dt=1.0, get_frames=make_video)

    vel_control.angular_velocity = np.array([0.0, -1.25, 0])

    # simulate forward and turn
    observations += simulate(sim, dt=2.0, get_frames=make_video)

    vel_control.controlling_ang_vel = False
    vel_control.controlling_lin_vel = False

    # simulate settling
    observations += simulate(sim, dt=3.0, get_frames=make_video)

    # video rendering with embedded 1st person view
    make_video_cv2(observations,
                   prefix="robot_control",
                   open_vid=True,
                   multi_obs=True)
Ejemplo n.º 19
0
    # %%
    # [dynamic_control]

    observations = []
    obj_templates_mgr.load_configs(str(os.path.join(data_path, "objects")))
    # search for an object template by key sub-string
    cheezit_template_handle = obj_templates_mgr.get_template_handles(
        "data/objects/cheezit")[0]
    box_positions = [
        np.array([2.39, -0.37, 0]),
        np.array([2.39, -0.64, 0]),
        np.array([2.39, -0.91, 0]),
        np.array([2.39, -0.64, -0.22]),
        np.array([2.39, -0.64, 0.22]),
    ]
    box_orientation = mn.Quaternion.rotation(mn.Rad(math.pi / 2.0),
                                             np.array([-1.0, 0, 0]))
    # instance and place the boxes
    box_ids = []
    for b in range(5):
        box_ids.append(sim.add_object_by_handle(cheezit_template_handle))
        sim.set_translation(box_positions[b], box_ids[b])
        sim.set_rotation(box_orientation, box_ids[b])

    # get the object's initialization attributes (all boxes initialized with same mass)
    object_init_template = sim.get_object_initialization_template(box_ids[0])
    # anti-gravity force f=m(-g)
    anti_grav_force = -1.0 * sim.get_gravity() * object_init_template.mass

    # throw a sphere at the boxes from the agent position
    sphere_template = obj_templates_mgr.get_template_by_ID(sphere_template_id)
Ejemplo n.º 20
0
def main(make_video=True, show_video=True):
    if make_video:
        if not os.path.exists(output_path):
            os.mkdir(output_path)

    # [initialize]
    # create the simulator
    cfg = make_configuration()
    sim = habitat_sim.Simulator(cfg)
    agent_transform = place_agent(sim)

    # [/initialize]

    # [basics]

    # load some object templates from configuration files
    sphere_template_id = sim.load_object_configs(
        str(os.path.join(data_path, "test_assets/objects/sphere")))[0]

    # add an object to the scene
    id_1 = sim.add_object(sphere_template_id)
    sim.set_translation(np.array([2.50, 0, 0.2]), id_1)

    # simulate
    observations = simulate(sim, dt=1.5, get_frames=make_video)

    if make_video:
        make_video_cv2(observations, prefix="sim_basics", open_vid=show_video)

    # [/basics]

    remove_all_objects(sim)

    # [dynamic_control]

    observations = []
    # search for an object template by key sub-string
    cheezit_template_handle = sim.get_template_handles(
        "data/objects/cheezit")[0]
    box_positions = [
        np.array([2.39, -0.37, 0]),
        np.array([2.39, -0.64, 0]),
        np.array([2.39, -0.91, 0]),
        np.array([2.39, -0.64, -0.22]),
        np.array([2.39, -0.64, 0.22]),
    ]
    box_orientation = mn.Quaternion.rotation(mn.Rad(math.pi / 2.0),
                                             np.array([-1.0, 0, 0]))
    # instance and place the boxes
    box_ids = []
    for b in range(5):
        box_ids.append(sim.add_object_by_handle(cheezit_template_handle))
        sim.set_translation(box_positions[b], box_ids[b])
        sim.set_rotation(box_orientation, box_ids[b])

    # get the object's initialization attributes (all boxes initialized with same mass)
    object_init_template = sim.get_object_initialization_template(box_ids[0])
    # anti-gravity force f=m(-g)
    anti_grav_force = -1.0 * sim.get_gravity() * object_init_template.get_mass(
    )

    # throw a sphere at the boxes from the agent position
    sphere_template = sim.get_object_template(sphere_template_id)
    sphere_template.set_scale(np.array([0.5, 0.5, 0.5]))
    sphere_id = sim.add_object(sphere_template_id)
    sim.set_translation(
        sim.agents[0].get_state().position + np.array([0, 1.0, 0]), sphere_id)
    # get the vector from the sphere to a box
    target_direction = sim.get_translation(
        box_ids[0]) - sim.get_translation(sphere_id)
    # apply an initial velocity for one step
    sim.set_linear_velocity(target_direction * 5, sphere_id)
    sim.set_angular_velocity(np.array([0, -1.0, 0]), sphere_id)

    start_time = sim.get_world_time()
    dt = 3.0
    while sim.get_world_time() < start_time + dt:
        # set forces/torques before stepping the world
        for box_id in box_ids:
            sim.apply_force(anti_grav_force, np.array([0, 0.0, 0]), box_id)
            sim.apply_torque(np.array([0, 0.01, 0]), box_id)
        sim.step_physics(1.0 / 60.0)
        observations.append(sim.get_sensor_observations())

    if make_video:
        make_video_cv2(observations,
                       prefix="dynamic_control",
                       open_vid=show_video)

    # [/dynamic_control]

    remove_all_objects(sim)

    # [kinematic_interactions]

    chefcan_template_handle = sim.get_template_handles(
        "data/objects/chefcan")[0]
    id_1 = sim.add_object_by_handle(chefcan_template_handle)
    sim.set_translation(np.array([2.4, -0.64, 0]), id_1)
    # set one object to kinematic
    sim.set_object_motion_type(habitat_sim.physics.MotionType.KINEMATIC, id_1)

    # drop some dynamic objects
    id_2 = sim.add_object_by_handle(chefcan_template_handle)
    sim.set_translation(np.array([2.4, -0.64, 0.28]), id_2)
    id_3 = sim.add_object_by_handle(chefcan_template_handle)
    sim.set_translation(np.array([2.4, -0.64, -0.28]), id_3)
    id_4 = sim.add_object_by_handle(chefcan_template_handle)
    sim.set_translation(np.array([2.4, -0.3, 0]), id_4)

    # simulate
    observations = simulate(sim, dt=1.5, get_frames=True)

    if make_video:
        make_video_cv2(observations,
                       prefix="kinematic_interactions",
                       open_vid=show_video)

    # [/kinematic_interactions]

    remove_all_objects(sim)

    # [kinematic_update]
    observations = []

    clamp_template_handle = sim.get_template_handles(
        "data/objects/largeclamp")[0]
    id_1 = sim.add_object_by_handle(clamp_template_handle)
    sim.set_object_motion_type(habitat_sim.physics.MotionType.KINEMATIC, id_1)
    sim.set_translation(np.array([0.8, 0, 0.5]), id_1)

    start_time = sim.get_world_time()
    dt = 1.0
    while sim.get_world_time() < start_time + dt:
        # manually control the object's kinematic state
        sim.set_translation(
            sim.get_translation(id_1) + np.array([0, 0, 0.01]), id_1)
        sim.set_rotation(
            mn.Quaternion.rotation(mn.Rad(0.05), np.array([-1.0, 0, 0])) *
            sim.get_rotation(id_1),
            id_1,
        )
        sim.step_physics(1.0 / 60.0)
        observations.append(sim.get_sensor_observations())

    if make_video:
        make_video_cv2(observations,
                       prefix="kinematic_update",
                       open_vid=show_video)

    # [/kinematic_update]

    # [velocity_control]

    # get object VelocityControl structure and setup control
    vel_control = sim.get_object_velocity_control(id_1)
    vel_control.linear_velocity = np.array([0, 0, -1.0])
    vel_control.angular_velocity = np.array([4.0, 0, 0])
    vel_control.controlling_lin_vel = True
    vel_control.controlling_ang_vel = True

    observations = simulate(sim, dt=1.0, get_frames=True)

    # reverse linear direction
    vel_control.linear_velocity = np.array([0, 0, 1.0])

    observations += simulate(sim, dt=1.0, get_frames=True)

    if make_video:
        make_video_cv2(observations, prefix="velocity_control", open_vid=True)

    # [/velocity_control]

    # [local_velocity_control]

    vel_control.linear_velocity = np.array([0, 0, 2.3])
    vel_control.angular_velocity = np.array([-4.3, 0.0, 0])
    vel_control.lin_vel_is_local = True
    vel_control.ang_vel_is_local = True

    observations = simulate(sim, dt=1.5, get_frames=True)

    # video rendering
    if make_video:
        make_video_cv2(observations,
                       prefix="local_velocity_control",
                       open_vid=True)

    # [/local_velocity_control]

    # [embodied_agent]

    # load the lobot_merged asset
    locobot_template_id = sim.load_object_configs(
        str(os.path.join(data_path, "objects/locobot_merged")))[0]

    # add robot object to the scene with the agent/camera SceneNode attached
    id_1 = sim.add_object(locobot_template_id, sim.agents[0].scene_node)
    sim.set_translation(np.array([1.75, -1.02, 0.4]), id_1)

    vel_control = sim.get_object_velocity_control(id_1)
    vel_control.linear_velocity = np.array([0, 0, -1.0])
    vel_control.angular_velocity = np.array([0.0, 2.0, 0])

    # simulate robot dropping into place
    observations = simulate(sim, dt=1.5, get_frames=make_video)

    vel_control.controlling_lin_vel = True
    vel_control.controlling_ang_vel = True
    vel_control.lin_vel_is_local = True
    vel_control.ang_vel_is_local = True

    # simulate forward and turn
    observations += simulate(sim, dt=1.0, get_frames=make_video)

    vel_control.controlling_lin_vel = False
    vel_control.angular_velocity = np.array([0.0, 1.0, 0])

    # simulate turn only
    observations += simulate(sim, dt=1.5, get_frames=make_video)

    vel_control.angular_velocity = np.array([0.0, 0.0, 0])
    vel_control.controlling_lin_vel = True
    vel_control.controlling_ang_vel = True

    # simulate forward only with damped angular velocity (reset angular velocity to 0 after each step)
    observations += simulate(sim, dt=1.0, get_frames=make_video)

    vel_control.angular_velocity = np.array([0.0, -1.25, 0])

    # simulate forward and turn
    observations += simulate(sim, dt=2.0, get_frames=make_video)

    vel_control.controlling_ang_vel = False
    vel_control.controlling_lin_vel = False

    # simulate settling
    observations += simulate(sim, dt=3.0, get_frames=make_video)

    # remove the agent's body while preserving the SceneNode
    sim.remove_object(id_1, False)

    # video rendering with embedded 1st person view
    if make_video:
        make_video_cv2(observations,
                       prefix="robot_control",
                       open_vid=True,
                       multi_obs=True)

    # [/embodied_agent]

    # [embodied_agent_navmesh]

    # load the lobot_merged asset
    locobot_template_id = sim.load_object_configs(
        str(os.path.join(data_path, "objects/locobot_merged")))[0]

    # add robot object to the scene with the agent/camera SceneNode attached
    id_1 = sim.add_object(locobot_template_id, sim.agents[0].scene_node)
    initial_rotation = sim.get_rotation(id_1)

    # set the agent's body to kinematic since we will be updating position manually
    sim.set_object_motion_type(habitat_sim.physics.MotionType.KINEMATIC, id_1)

    # create and configure a new VelocityControl structure
    # Note: this is NOT the object's VelocityControl, so it will not be consumed automatically in sim.step_physics
    vel_control = habitat_sim.physics.VelocityControl()
    vel_control.controlling_lin_vel = True
    vel_control.lin_vel_is_local = True
    vel_control.controlling_ang_vel = True
    vel_control.ang_vel_is_local = True
    vel_control.linear_velocity = np.array([0, 0, -1.0])

    # try 2 variations of the control experiment
    for iteration in range(2):
        # reset observations and robot state
        observations = []
        sim.set_translation(np.array([1.75, -1.02, 0.4]), id_1)
        sim.set_rotation(initial_rotation, id_1)
        vel_control.angular_velocity = np.array([0.0, 0, 0])

        video_prefix = "robot_control_sliding"
        # turn sliding off for the 2nd pass
        if iteration == 1:
            sim.config.sim_cfg.allow_sliding = False
            video_prefix = "robot_control_no_sliding"

        # manually control the object's kinematic state via velocity integration
        start_time = sim.get_world_time()
        last_velocity_set = 0
        dt = 6.0
        time_step = 1.0 / 60.0
        while sim.get_world_time() < start_time + dt:
            previous_rigid_state = sim.get_rigid_state(id_1)

            # manually integrate the rigid state
            target_rigid_state = vel_control.integrate_transform(
                time_step, previous_rigid_state)

            # snap rigid state to navmesh and set state to object/agent
            end_pos = sim.step_filter(previous_rigid_state.translation,
                                      target_rigid_state.translation)
            sim.set_translation(end_pos, id_1)
            sim.set_rotation(target_rigid_state.rotation, id_1)

            # Check if a collision occured
            dist_moved_before_filter = (
                target_rigid_state.translation -
                previous_rigid_state.translation).dot()
            dist_moved_after_filter = (end_pos -
                                       previous_rigid_state.translation).dot()

            # NB: There are some cases where ||filter_end - end_pos|| > 0 when a
            # collision _didn't_ happen. One such case is going up stairs.  Instead,
            # we check to see if the the amount moved after the application of the filter
            # is _less_ than the amount moved before the application of the filter
            EPS = 1e-5
            collided = (dist_moved_after_filter +
                        EPS) < dist_moved_before_filter

            # run any dynamics simulation
            sim.step_physics(time_step)

            # render observation
            observations.append(sim.get_sensor_observations())

            # randomize angular velocity
            last_velocity_set += time_step
            if last_velocity_set >= 1.0:
                vel_control.angular_velocity = np.array(
                    [0, (random.random() - 0.5) * 2.0, 0])
                last_velocity_set = 0

        # video rendering with embedded 1st person view
        if make_video:
            make_video_cv2(observations,
                           prefix=video_prefix,
                           open_vid=True,
                           multi_obs=True)