def svm_baseline(): img_images, img_labels, tst_images, tst_labels = main.load_mnist() training_images, training_labels = util.subSample(img_images, img_labels, 50000) training_data = (training_images, training_labels) test_data = (tst_images, tst_labels) print(training_data[0].shape) print(training_data[1].shape) print(test_data[0].shape) print(test_data[1].shape) # train clf = svm.SVC() clf.fit(training_data[0], training_data[1]) # test predictions = [int(a) for a in clf.predict(test_data[0])] num_correct = sum(int(a == y) for a, y in zip(predictions, test_data[1])) print("Baseline classifier using an SVM.") print("%s of %s values correct." % (num_correct, len(test_data[1])))
from main import training from main import test from main import load_mnist img_images, img_labels, tst_images, tst_labels = load_mnist() print(img_images.shape) clf = training(img_images, img_labels, 500) test_size = 100 num_correct = test(clf, tst_images, tst_labels, test_size) print ("Baseline classifier using an SVM.") print ("%s of %s values correct." % (num_correct, test_size))
parser.add_argument('--max_params', default=0, type=int) parser.add_argument('chromosome', help="Chromosme") args = parser.parse_args() set_args(args) print(args) if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) if not os.path.exists(args.cache_dir): os.makedirs(args.cache_dir) # load data if args.dataset == 'mnist': (x_train, y_train), (x_test, y_test) = load_mnist() inshape = [28, 1, 1, 10] elif args.dataset == 'fmnist' or args.dataset == 'fashion_mnist': (x_train, y_train), (x_test, y_test) = load_fmnist() inshape = [28, 1, 1, 10] elif args.dataset == 'cifar10': from keras.datasets import cifar10 (x_train, y_train), (x_test, y_test) = load_cifar10() inshape = [32, 3, 1, 10] elif args.dataset == 'cifar100': from keras.datasets import cifar100 (x_train, y_train), (x_test, y_test) = load_cifar100() inshape = [32, 3, 1, 100] elif args.dataset == 'svhn': (x_train, y_train), (x_test, y_test) = load_svhn() inshape = [32, 3, 1, 10]
# -*- coding: utf-8 -*- from main import load_mnist import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from KernelizedPerceptron import MyKP if __name__ == '__main__': images, labels = load_mnist('data/fashion') x_test, y_test = load_mnist('data/fashion', kind='t10k') x_train, x_validation, y_train, y_validation =\ train_test_split(images, labels, test_size=0.2) degree = [2, 3, 4] for i in degree: MyKP(x_train, y_train, x_validation, y_validation, x_test, y_test, i)