def run(): gdc_1 = main.load_gold_data(Config1_1) gdc_1 = main.transform_gold_data(Config1_1, gdc_1) gdc_1 = main.transform_gold_data(Config1_2, gdc_1) gdc = GoldDataContainer(cats_list=gdc_1.cats_list) gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_1) gdc_2 = main.load_gold_data(Config2) gdc_2 = main.transform_gold_data(Config2, gdc_2) gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_2) gdc_3 = main.load_gold_data(Config3) gdc_3 = main.transform_gold_data(Config3, gdc_3) gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_3) gdc_4 = main.load_gold_data(Config4) gdc_4 = main.transform_gold_data(Config4, gdc_4) gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_4) gdc_5 = main.load_gold_data(Config5) gdc_5 = main.transform_gold_data(Config5, gdc_5) gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_5) gdc_6 = main.load_gold_data(Config6) gdc_6 = main.transform_gold_data(Config6, gdc_6) gdc = gold_data_manager.merge_assuming_identical_categories(gdc, gdc_6) trainer = main.init_trainer(ConfigTrain, cats_list=gdc.cats_list) main.run_training(config=ConfigTrain, trainer=trainer, gold_data_container=gdc) embed()
def run(): gdc = main.load_gold_data(ConfigBase) gdc = main.transform_gold_data(ConfigBase, gdc) trainer = main.init_trainer(ConfigTdc100, cats_list=gdc.cats_list) main.run_training(config=ConfigTdc100, trainer=trainer, gold_data_container=gdc) trainer = main.init_trainer(ConfigTdc80, cats_list=gdc.cats_list) main.run_training(config=ConfigTdc80, trainer=trainer, gold_data_container=gdc)
def run(): gdc = main.load_gold_data(ConfigSub) gdc = main.transform_gold_data(ConfigSub, gdc) for i in range(30): if i == 0: ConfigSub.should_load_model = False ConfigSub.should_create_model = True else: ConfigSub.should_load_model = True ConfigSub.should_create_model = False trainer = main.init_trainer(config=ConfigSub, cats_list=gdc.cats_list) main.run_training(ConfigSub, trainer, gdc)
def train(trainer1, trainer2): gdc = main.load_gold_data(ConfigTrainCompareBase) gdc = main.transform_gold_data(ConfigTrainCompareBase, gdc) if trainer1 is None: ConfigTrainCompareBase.should_load_model = False ConfigTrainCompareBase.should_create_model = True trainer1 = main.init_trainer(ConfigTrainCompare1, cats_list=gdc.cats_list) trainer2 = main.init_trainer(ConfigTrainCompare2, cats_list=gdc.cats_list) main.run_training(ConfigTrainCompare1, trainer1, gdc) main.run_training(ConfigTrainCompare2, trainer2, gdc) return trainer1, trainer2
def test_nec(): env = ENV() key_size = 4 seed = 1 np.random.seed(seed) torch.manual_seed(seed) net = nn.Linear(env.observation_space.shape[0], key_size) config = { "env": env, "env_name": "test_env", "exp_name": "test", "device": torch.device("cpu"), "max_steps": 40, "initial_epsilon": 1, "final_epsilon": 0.5, "epsilon_anneal_start": 1, "epsilon_anneal_end": 2, "start_learning_step": 1, "replay_frequency": 1, "eval_frequency": 1000000, # no eval for now ###### NEC AGENT CONFIG ################# "train_eps": 1, # initializing agent to be fully exploratory "eval_eps": 0, "num_actions": env.action_space.n, "observation_shape": env.observation_space.shape[0], "replay_buffer_size": 20, "batch_size": 3, "discount": 1, "horizon": 1, "learning_rate": 0.1, ###### NEC CONFIG ####################### "embedding_net": net, ###### DND CONFIG ####################### "dnd_capacity": 15, "num_neighbours": 1, "key_size": key_size, "alpha": 0.99, } # perform experiment agent = run_training(config, True) # check learned q_values for all states q_values = agent.get_q_values(env._obs[[0, 1, 2, 0, 1, 2]], [0, 0, 0, 1, 1, 1]) expected_values = np.array([5.0, 2.0, 3.0, 3.0, 5.0, 1.0]) print(f'Expected: {expected_values}') print(f'Got: {q_values}') assert np.allclose(q_values, expected_values, atol=0.2)
""" Created on Sat Jul 11 00:09:38 2020 @author: btayart """ #%% Redo all training with ignore_unlabeled set to True #Train the ENet model with vanilia CamVid from main import run_training from custom import CustomArgs import torch args = CustomArgs(resume=False, batch_size=6, print_step=False, ignore_unlabeled = True, model_type="ENet", name="ENet_allclasses") run_training(args) torch.cuda.empty_cache() # BEST VALIDATION # Epoch: 170 # Mean IoU: 0.651799197633767 args = CustomArgs(resume=False, batch_size=6, print_step=False, weight_decay=2e-3, ignore_unlabeled = True, model_type="ENet", name="ENet_allclasses_wd2") run_training(args) torch.cuda.empty_cache() # BEST VALIDATION # Epoch: 270 # Mean IoU: 0.6653864847519912 # Train the ENet model on CamVid with 'people' classes dropped
def run(): gdc = main.load_gold_data(ConfigSub) gdc = main.transform_gold_data(ConfigSub, gdc) trainer = main.init_trainer(config=ConfigSub, cats_list=gdc.cats_list) main.run_training(ConfigSub, trainer, gdc)
#! /usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2018/6/7 0007 14:51 # @Author : jsz # @Software: PyCharm import main main.rename() name_test = 'testrandomtrain' name_test1 = 'testrandomval' tfrecords_file = '.\\testrandomtrain.tfrecords' tfrecords_file1 = '.\\testrandomval.tfrecords' test_dir = '.\\data\\train\\' save_dir = '.\\' test_dir1 = '.\\data\\val\\' save_dir1= '.\\' images, labels = main.get_file(test_dir) main.convert_to_tfrecord(images, labels, save_dir, name_test) images1, labels1 = main.get_file(test_dir1) main.convert_to_tfrecord(images1, labels1, save_dir1, name_test1) main.run_training(tfrecords_file,tfrecords_file1)