def __init__(self, window_size, item_dict): self.window_size = window_size self.img = cv2.imread('p_map3.jpg') self.img = cv2.resize(self.img, (64,64)) self.img = cv2.erode(self.img, np.ones((2,2)), iterations=1) self.img = np.asarray(self.img[:,:,1] < 200 ).astype(np.uint) #self.dot_path = [] self.current_loc = [] self.my_loc = [(120//2,64//2), 0, (-1,-1), (-1,-1)] self.check_out_1 = Data('Check_out_1',(115//2,40//2),0,(100 // 2,25 // 2),(100 // 2,52 // 2), None) self.check_out_2 = Data('Check_out_2',(115//2,96//2),0,(100 // 2,73 // 2),(100,100 // 2), None) self.item_dict = item_dict self.idx = [] self.idx_name = []
def DataDelete(self, query): logging.error(query) if query.tag: datakey = Data.query(Data.tag == query.tag).get() if query.name: datakey = Data.query(Data.name == query.name).get() logging.error(datakey) if query.tag or query.name: if datakey: logging.error(datakey) datakey.key.delete() return (datakey)
def DataDelete(self,query): logging.error(query) if query.tag: datakey=Data.query(Data.tag==query.tag).get() if query.name: datakey=Data.query(Data.name==query.name).get() logging.error(datakey) if query.tag or query.name: if datakey: logging.error(datakey) datakey.key.delete() return(datakey)
n_days = 334 coefs = np.ones(n_days) znam = np.arange(n_days + 1, 1, -1) #print(znam.shape, coefs.shape) coefs /= znam coefs = np.array([coefs]).T coefs *= coefs def rescale_features(X): X[:n_days, :] *= coefs X[n_days:2 * n_days, :] *= coefs X[2 * n_days:3 * n_days, :] *= coefs return X if __name__ == "__main__": create_ds = Data('learning_set/') ts = create_ds.create_train_set(isFull=False) scl = StandardScaler() X = scl.fit_transform(ts[0]) X = rescale_features(X) cl = KMeans(n_clusters=12).fit(X) labels = cl.predict(X) centr = get_centriod(cl, ts[0]) book_data = acum_all_gr(create_ds, 1, ts[2]) interv = conf_intervals(book_data, labels, 0.05)
def data_fixture(): data_handler = Data() return data_handler
def test_photo_size(self): data = Data() dataset = data.body["SN1987A"]["photometry"] types, _ = photometry.part(dataset) length = len(types) self.assertEqual(length, 5)
def test_xray_size(self): data = Data() dataset = data.body["SN1987A"]["xray"] _, flux = xray.part(dataset) length = len(flux) self.assertEqual(length, 105)
def test_spect_size(self): data = Data() dataset = data.body["SN1987A"]["spectra"] values = spectra.part(dataset) length = len(values) self.assertEqual(length, 36)
# Logistic regression using scikit learn from sklearn.linear_model import LogisticRegression from main import Data # initialize data data = Data() data.init_data() data.standard_split() lr = LogisticRegression(C=100.0, random_state=1) lr.fit(data.X_train_std, data.y_train) plt = data.plot_decision_regions(data.X_train_std, data.y_train, lr) plt.xlabel('petal length [standardized]') plt.ylabel('petal length [standardized]') plt.legend(loc='upper left') plt.show()
import xgboost as xgb from main import Data import numpy as np import pandas as pd def predict_qlty(dt): (X_train, Y_train, uid_train) = dt.create_train_set() (X_test, uid_test) = dt.create_test_set() regr = xgb.XGBRegressor(colsample_bytree=1, subsample=0.9, min_child_weight=5, max_depth=6, colsample_bylevel=0.8, learning_rate=0.1, n_estimators=200) regr.fit(X_train[Y_train >= 0], Y_train[Y_train >= 0]) #print(X_test) preds = regr.predict(X_test) #print(preds) preds_int = np.round(preds) #print(preds_int) df = pd.DataFrame({'UID': uid_test, 'score': preds_int}) #print(df) df.to_csv('marked_data_test.csv', sep=';') create_ds = Data('learning_set/') predict_qlty(create_ds)
def draw_stats(): w, h = GlobalSetup.WINDOW_RESOLUTION # draw background Graphics.draw_rect(Graphics.shifted((0, 0)), Graphics.shifted((w, h)), Colors.BG_COLOR) Graphics.draw_rect(Graphics.shifted((w // 3, h // 2)), Graphics.shifted((w * 2 // 3, h * 9 // 10)), Colors.WHITE) Graphics.draw_rect(Graphics.shifted((w // 3, h * 2 // 5)), Graphics.shifted((w * 2 // 3, 0)), Colors.WHITE) x_axis_len = w // 3 - h // 10 - 1 y_axis_len = h * 3 // 10 jump = len(Data.data) / x_axis_len # value_jump = y_axis_len / GlobalSetup.no_balls Graphics.plot_area(jump, y_axis_len, w, h) # draw axes Graphics.draw_line(Graphics.shifted((w // 3 + h // 20, h * 11 // 20)), Graphics.shifted((w // 3 + h // 20, h * 17 // 20))) Graphics.draw_line( Graphics.shifted((w // 3 + h // 20, h * 11 // 20)), Graphics.shifted((w * 2 // 3 - h // 20, h * 11 // 20))) # draw upper arrow Graphics.draw_line( Graphics.shifted((w // 3 + h // 20, h * 17 // 20)), Graphics.shifted( (w // 3 + h // 20 - h // 200, h * 17 // 20 - h // 200))) Graphics.draw_line( Graphics.shifted((w // 3 + h // 20, h * 17 // 20)), Graphics.shifted( (w // 3 + h // 20 + h // 200, h * 17 // 20 - h // 200))) # draw right arrow Graphics.draw_line( Graphics.shifted((w * 2 // 3 - h // 20, h * 11 // 20)), Graphics.shifted( (w * 2 // 3 - h // 20 - h // 200, h * 11 // 20 + h // 200))) Graphics.draw_line( Graphics.shifted((w * 2 // 3 - h // 20, h * 11 // 20)), Graphics.shifted( (w * 2 // 3 - h // 20 - h // 200, h * 11 // 20 - h // 200))) shift = 25 # Labels Graphics.write( "Population size:", Graphics.shifted((w // 3 + w // 30, h * 2 // 5 - 2 * shift))) Graphics.write( "Speed:", Graphics.shifted((w // 3 + w // 30, h * 2 // 5 - 3 * shift))) Graphics.write( "Recovery:", Graphics.shifted((w // 3 + w // 30, h * 2 // 5 - 4 * shift))) Graphics.write( "Social distancing:", Graphics.shifted((w // 3 + w // 30, h * 2 // 5 - 5 * shift))) Graphics.write( "Ball radius:", Graphics.shifted((w // 3 + w // 30, h * 2 // 5 - 6 * shift))) Graphics.write( "Infected:", Graphics.shifted((w // 3 + w // 30, h * 2 // 5 - 8 * shift))) Graphics.write( "Duration:", Graphics.shifted((w // 3 + w // 30, h * 2 // 5 - 9 * shift))) Graphics.write( "\u03B2 (SIR model):", Graphics.shifted((w // 3 + w // 30, h * 2 // 5 - 10 * shift))) Graphics.write( "\u03B3 (SIR model):", Graphics.shifted((w // 3 + w // 30, h * 2 // 5 - 11 * shift))) Graphics.write( "R0:", Graphics.shifted( (w // 3 + w // 30, h * 2 // 5 - 12 * shift))) # Values Graphics.write(f"{GlobalSetup.NO_BALLS}", Graphics.shifted((w // 2, h * 2 // 5 - 2 * shift))) Graphics.write(f"No speed", Graphics.shifted((w // 2, h * 2 // 5 - 3 * shift))) Graphics.write(f"{GlobalSetup.RECOVERY_PROB} chance/iteration", Graphics.shifted((w // 2, h * 2 // 5 - 4 * shift))) Graphics.write(f"No social distancing", Graphics.shifted((w // 2, h * 2 // 5 - 5 * shift))) Graphics.write(f"{GlobalSetup.BALL_RADIUS}", Graphics.shifted((w // 2, h * 2 // 5 - 6 * shift))) Graphics.write( f"{Data.data[-1][States.RECOVERED] / GlobalSetup.NO_BALLS * 100: .2f}% ({Data.data[-1][States.RECOVERED]})", Graphics.shifted((w // 2, h * 2 // 5 - 8 * shift))) Graphics.write(f"{len(Data.data)} iterations", Graphics.shifted((w // 2, h * 2 // 5 - 9 * shift))) beta, gamma, r0 = Data.SIR_analyse() beta2, gamma2, r02 = Data.SIR_analyse_improved() Graphics.write(f"{beta: .2f} ({beta2: .2f})", Graphics.shifted((w // 2, h * 2 // 5 - 10 * shift))) Graphics.write(f"{gamma: .2f} ({gamma2: .2f})", Graphics.shifted((w // 2, h * 2 // 5 - 11 * shift))) Graphics.write(f"{r0: .2f} ({r02: .2f})", Graphics.shifted((w // 2, h * 2 // 5 - 12 * shift))) tt.update() tt.exitonclick()
def main(_): data = Data() # Create the model x = tf.placeholder(tf.float32, [None, 300, 300, 1]) # Define loss and optimizer y_ = tf.placeholder(tf.int32, [None, 116, 116]) # Build the graph for the deep net y_conv = unet(x) with tf.name_scope('loss'): loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y_, logits=y_conv) loss = tf.reduce_mean(loss) tf.summary.scalar('loss', loss) with tf.name_scope('AdamOptimizer'): train_step = tf.train.AdamOptimizer(0.0001, 0.95, 0.99).minimize(loss) with tf.name_scope('Accuracy'): # Training accuracy prediction = tf.argmax(y_conv, 3) # argmax the 3rd dimension, the label correct_pix_pred = np.sum(prediction == y_) incorrect_pix_pred = np.sum(prediction != y_) n_pix = 116 * 116 train_acc = correct_pix_pred / (incorrect_pix_pred + n_pix) # Validation accuracy val_acc = 0 val_images = data.get_test_image_list_and_label_list() for i in range(len(val_images[0])): x_val = val_images[0][i] y_val = val_images[1][i] y_conv_acc = unet(x_val) prediction = tf.argmax(y_conv_acc, 3) correct_pix_pred = np.sum(prediction == y_val) incorrect_pix_pred = np.sum(prediction != y_val) n_pix = 116 * 116 val_acc += correct_pix_pred / (incorrect_pix_pred + n_pix) train_acc = tf.summary.scalar('Training accuracy', train_acc) val_acc = tf.summary.scalar('Validation accuracy', val_acc) graph_location = tempfile.mkdtemp() print('Saving graph to: %s' % graph_location) writer = tf.summary.FileWriter(graph_location) writer.add_graph(tf.get_default_graph()) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter(FLAGS.log_dir + '/assignment04', sess.graph) for i in range(400): batch = data.get_train_image_list_and_label_list() if i % 100 == 0: train_acc, val_acc = sess.run([train_acc, val_acc], feed_dict={x: batch[0], y_: batch[1]}) writer.add_summary(train_acc, i) writer.add_summary(val_acc, i) print('step %d'% (i)) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) writer.close()