Ejemplo n.º 1
0
def detect(detector, fn, splt_num=64, simu_type="default"):
    full_fn = myfsys.get_template_file_full_path_(fn)
    img = read_image(full_fn)
    cv2.imshow('hoge', img)
    with Timer('Detection with [ ' + simu_type + ' ]'):
        splt_kp, splt_desc = spltA.affine_detect_into_mesh(detector, splt_num, img, simu_param=simu_type)
    return img, splt_kp, splt_desc
def split_asift_detect(detector, fn, split_num):
    img = emod.read_image(fn)
    pool = ThreadPool(processes=cv2.getNumberOfCPUs())
    with Timer('Detection with [ ASIFT ]'):
        splt_kp, splt_desc = saf.affine_detect_into_mesh(detector,
                                                         split_num,
                                                         img,
                                                         simu_param='asift')
    return img, splt_kp, splt_desc
Ejemplo n.º 3
0
def detect_and_match(detector, matcher, set_fn, splt_num=64, simu_type="default"):
    """
    SplitA実験
    set_fn:
    """
    fnQ, testcase, fnT = set_fn
    def get_expt_names():
        tmpf, tmpext = os.path.splitext(fnT)
        return (os.path.basename(__file__), testcase, tmpf)
    expt_names = get_expt_names()
    logger = setup(expt_names)
    logger.info(__doc__)

    full_fnQ = myfsys.getf_template((fnQ,))
    full_fnT = myfsys.getf_input(testcase, fnT)
    imgQ, imgT = read_images(full_fnQ, full_fnT, logger)

    pool = ThreadPool(processes=cv2.getNumberOfCPUs())
    with Timer('Detection with SPLIT-ASIFT', logger):
        splt_kpQ, splt_descQ = spltA.affine_detect_into_mesh(detector, splt_num, imgQ, simu_param=simu_type)
    with Timer('Detection with SFIT', logger):
        kpT, descT = affine_detect(detector, imgT, pool=pool, simu_param='test')
    logger.info('imgQ - {0} features, imgT - {1} features'.format(spltA.count_keypoints(splt_kpQ), len(kpT)))

    with Timer('matching', logger):
        mesh_pQ, mesh_pT, mesh_pairs = spltA.match_with_cross(matcher, splt_descQ, splt_kpQ, descT, kpT)

    Hs = []
    statuses = []
    kp_pairs_long = []
    Hs_stable = []
    kp_pairs_long_stable = []
    for pQ, pT, pairs in zip(mesh_pQ, mesh_pT, mesh_pairs):
        pairs, H, status = calclate_Homography(pQ, pT, pairs)
        Hs.append(H)
        statuses.append(status)
        if status is not None and not len(status) == 0 and np.sum(status)/len(status) >= 0.4:
            Hs_stable.append(H)
        else:
            Hs_stable.append(None)
        for p in pairs:
            kp_pairs_long.append(p)
            if status is not None and not len(status) == 0 and np.sum(status)/len(status) >= 0.4:
                kp_pairs_long_stable.append(p)

    vis = draw_matches_for_meshes(imgQ, imgT, Hs=Hs)
    cv2.imwrite(myfsys.getf_output(expt_names, 'meshes.png'), vis)

    visS = draw_matches_for_meshes(imgQ, imgT, Hs=Hs_stable)
    cv2.imwrite(myfsys.getf_output(expt_names, 'meshes_stable.png'), visS)

    viw = explore_match_for_meshes('affine find_obj', imgQ, imgT, kp_pairs_long_stable, Hs=Hs_stable)
    cv2.imwrite(myfsys.getf_output(expt_names, 'meshes_and_keypoints_stable.png'), viw)

    return vis, visS, viw
def get_split_keypoint_detector(_template_fn, _temp_inf, _detector, _imgQ):
    try:
        with splta.Timer('Lording pickle'):
            splt_kpQ, splt_descQ = splta.affine_load_into_mesh(
                _template_fn, _temp_inf.get_splitnum())
    except ValueError as e:
        print(e.args)
        print('If you need to save {} to file as datavase. ¥n' +
              ' Execute makedb/make_split_combine_featureDB_from_templates.py')
        with splta.Timer('Detection and dividing'):
            splt_kpQ, splt_descQ = splta.affine_detect_into_mesh(
                _detector, _temp_inf.get_splitnum(), _imgQ, simu_param='asift')

    return splt_kpQ, splt_descQ
    def test_affine_detect_into_mesh(self):
        with Timer('Detection with split into mesh'):
            splits_kp, splits_desc = splta2.affine_detect_into_mesh(
                self.detector, self.splt_num, self.img1, simu_param='test2')
        self.assertIsNotNone(splits_kp)
        self.assertIsNotNone(splits_desc)
        self.assertEqual(len(splits_kp), self.splt_num, "It is not same")
        self.assertEqual(len(splits_desc), self.splt_num, "It is not same")
        lenskp = 0
        lensdescr = 0
        for skp, sdesc in zip(splits_kp, splits_desc):
            if not skp:
                self.assertTrue(False, "Keypoints of mesh is Empty")
            else:
                self.assertEqual(len(skp), 3, "It is not same")
                for mesh_kp in skp:
                    lenskp += len(mesh_kp)
            if not sdesc:
                self.assertTrue(False, "Descriptors of mesh is Empty")
            self.assertNotEqual(sdesc[0].size, 0, "Descriptor is Empty")
            self.assertEqual(sdesc[0].shape[1], 128, "SIFT features")
            self.assertEqual(len(sdesc), 3, "It is not same")
            for mesh_desc in sdesc:
                lensdescr += mesh_desc.shape[0]

        with Timer('Detection'):
            kp, desc = affine_detect(self.detector,
                                     self.img1,
                                     simu_param='test2')
            kps, descs = splta.affine_detect_into_mesh(self.detector,
                                                       self.splt_num,
                                                       self.img1,
                                                       simu_param='test2')
        a = splta.count_keypoints(kps)
        print("{0} == {1}, {2}, {3}".format(lenskp, a, len(kp), lensdescr))
        self.assertEqual(lenskp, len(kp), "Some keypoints were droped out.")
        self.assertEqual(lensdescr, len(desc),
                         "Some descriptors were droped out.")
        self.assertEqual(lenskp, a, "Some keypoints were droped out.")
        self.assertEqual(lensdescr, a, "Some descriptors were droped out.")
        "_scols": scols,
        "_srows": srows,
        "_nneighbor": 4
    }
    temp_inf = splta.TmpInf(**template_information)

    try:
        with splta.Timer('Lording pickle'):
            splt_kpQ, splt_descQ = splta.affine_load_into_mesh(
                template_fn, temp_inf.get_splitnum())
    except ValueError as e:
        print(e.args)
        print('If you need to save {} to file as datavase. ¥n' +
              ' Execute makedb/make_split_combine_featureDB_from_templates.py')
        with splta.Timer('Detection and dividing'):
            splt_kpQ, splt_descQ = splta.affine_detect_into_mesh(
                detector, temp_inf.get_splitnum(), imgQ, simu_param='asift')

    mesh_k_num = splta.np.array([len(keypoints) for keypoints in splt_kpQ
                                 ]).reshape(temp_inf.get_mesh_shape())
    median = splta.np.nanmedian(mesh_k_num)

    fn, ext = os.path.splitext(os.path.basename(fn2_full))
    testset_name = os.path.basename(os.path.dirname(fn2_full))
    imgT = splta.cv2.imread(fn2_full, 0)
    if imgT is None:
        print('Failed to load fn2:', fn2_full)
        sys.exit(1)
    print("INPUT: {}".format(fn2_full))

    pool = splta.ThreadPool(processes=splta.cv2.getNumberOfCPUs())
    with splta.Timer('Detection'):
Ejemplo n.º 7
0
        sys.exit(1)
    print('Using :', feature_name)

    template_fn, ext = os.path.splitext(os.path.basename(fn1))
    template_information = {"_fn": "tmp.png", "template_img": template_fn,
                            "_cols": 800, "_rows": 600, "_scols": 8, "_srows": 8, "_nneighbor": 4}
    temp_inf = TmpInf(**template_information)
    try:
        with Timer('Lording pickle'):
            splt_kpQ, splt_descQ = affine_load_into_mesh(template_fn, temp_inf.get_splitnum())
    except ValueError as e:
        print(e)
        print('If you need to save {} to file as datavase. ¥n'
              + ' Execute /Users/tiwasaki/PycharmProjects/makedb/make_split_combine_featureDB_from_templates.py')
        with Timer('Detection and dividing'):
            splt_kpQ, splt_descQ = affine_detect_into_mesh(detector, temp_inf.get_splitnum(),
                                                           imgQ, simu_param='default')

    sk_num = count_keypoints(splt_kpQ)
    m_skQ, m_sdQ, m_k_num, merged_map = combine_mesh_compact(splt_kpQ, splt_descQ, temp_inf)
    if not sk_num == count_keypoints(m_skQ) and not count_keypoints(m_skQ) == np.sum(m_k_num):
        print('{0}, {1}, {2}'.format(sk_num, count_keypoints(m_skQ), np.sum(m_k_num)))
        sys.exit(1)
    median = np.nanmedian(m_k_num)
    list_merged_mesh_id = list(set(np.ravel(merged_map)))

    pool = ThreadPool(processes=cv2.getNumberOfCPUs())
    with Timer('Detection'):
        kpT, descT = affine_detect(detector, imgT, pool=pool, simu_param='test')

    with Timer('matching'):
        mesh_pQ, mesh_pT, mesh_pairs = match_with_cross(matcher, m_sdQ, m_skQ, descT, kpT)
Ejemplo n.º 8
0
    def test_result(self):
        s_kp, s_desc = splta.affine_detect_into_mesh(self.detector,
                                                     self.splt_num, self.img1)
        pool = ThreadPool(processes=cv2.getNumberOfCPUs())
        kp2, desc2 = affine_detect(self.detector, self.img2, pool=pool)
        len_s_kp = 0
        for kps in s_kp:
            len_s_kp += len(kps)
        print('imgQ - %d features, imgT - %d features' % (len_s_kp, len(kp2)))

        def calc_H(kp1, kp2, desc1, desc2):
            with Timer('matching'):
                raw_matches = self.matcher.knnMatch(desc2, desc1, 2)  #2
            p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
            if len(p1) >= 4:
                H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
                print('%d / %d  inliers/matched' %
                      (np.sum(status), len(status)))
                # do not draw outliers (there will be a lot of them)
                kp_pairs = [kpp for kpp, flag in zip(kp_pairs, status) if flag]
            else:
                H, status = None, None
                print(
                    '%d matches found, not enough for homography estimation' %
                    len(p1))

            return kp_pairs, H, status

        def match_and_draw(win):
            list_kp_pairs = []
            Hs = []
            statuses = []
            i = 0
            for kps, desc in zip(s_kp, s_desc):
                assert type(desc) == type(desc2), "EORROR TYPE"
                with Timer('matching'):
                    raw_matches = self.matcher.knnMatch(desc2,
                                                        trainDescriptors=desc,
                                                        k=2)  #2
                p2, p1, kp_pairs = filter_matches(kp2, kps, raw_matches)
                if len(p1) >= 4:
                    H, status = cv2.findHomography(p2, p1, cv2.RANSAC, 5.0)
                    print('%d / %d  inliers/matched' %
                          (np.sum(status), len(status)))
                    # do not draw outliers (there will be a lot of them)
                    list_kp_pairs.extend(
                        [kpp for kpp, flag in zip(kp_pairs, status) if flag])
                else:
                    H, status = None, None
                    print(
                        '%d matches found, not enough for homography estimation'
                        % len(p1))
                Hs.append(H)
                statuses.extend(status)
                i += 1
            vis = show(win, self.img2, self.img1, list_kp_pairs, statuses, Hs)

        match_and_draw('affine find_obj')
        cv2.waitKey()
        cv2.destroyAllWindows()
        self.assertEqual(1, 1)