Ejemplo n.º 1
0
def get_train_data():
    images, labels = load_data()
    imgs, lbls = [], []
    for i, (img, lbl) in enumerate(zip(images, labels)):
        if i in [2, 24, 41, 85, 75, 6, 7]:
            continue
        imgs += [img]
        lbls += [lbl]
            
    cropped_images1, cropped_masks1, _ = ImageCutter.image_and_mask_cutter(imgs, lbls,
        window_h=256, window_w=256, step_x=50, step_y=50, classes_to_get=[40, 70, 80])
    
    cropped_images2, cropped_masks2, _ = ImageCutter.image_and_mask_cutter(
        imgs, lbls, window_h=256, window_w=256, step_x=40, step_y=40, classes_to_get=[70])
    
    cropped_images3, cropped_masks3, _ = ImageCutter.image_and_mask_cutter(
        imgs, lbls, window_h=256, window_w=256, step_x=60, step_y=60, classes_to_get=[60])
    
    cropped_images4, cropped_masks4, _ = ImageCutter.image_and_mask_cutter(
        imgs, lbls, window_h=256, window_w=256, step_x=60, step_y=60, classes_to_get=[10])
        
    cropped_images = cropped_images1 + cropped_images2 + cropped_images3 + cropped_images4
    cropped_masks = cropped_masks1 + cropped_masks2 + cropped_masks3 + cropped_masks4
    
    return cropped_images, cropped_masks
Ejemplo n.º 2
0
    def image_and_mask_cutter(images,
                              masks,
                              window_h,
                              window_w,
                              step_x,
                              step_y,
                              classes_to_get,
                              use_all_px=True):
        """
        Crops `images` and `masks` using sliding window with resize.
        Parameters
        ----------
        images : list
            List of input images.
        masks : list
            List of input masks.
        window_h : int
            Output image height.
        window_w : int
            Output image width.
        step_x : int
            Sliding window step by OX.
        step_y : int
            Sliding window step by OX.
        scale_factor : float
            Scale factor, must be in range (0, 1). After each 'sliding window step' the original images
            are resized to (previous_width * scale_factor, previous_height * scale_factor).
        postprocessing : func
            Post processing function, using on cropped image (may be function what calculate num positives pixels).
        use_all_px : bool
            If True, all pixels of image would be in output lists.

        Returns
        -------
        Three list:
            1. cropped images
            2. cropped masks
            3. additional list (result of post processing)
        """
        assert (len(images) > 0)
        assert (len(images) == len(masks))
        assert (window_h > 0 and window_w > 0 and step_x > 0 and step_y > 0)

        cropped_images = []
        cropped_masks = []
        additional_list = []
        dx = 0
        dy = 0

        for index, (img, mask) in enumerate(zip(images, masks)):
            print(index)
            assert (img.shape[:2] == mask.shape[:2])
            current_height, current_width = img.shape[:2]

            for dy in range(int((current_height - window_h) / step_y)):
                for dx in range(int((current_width - window_w) / step_x)):
                    crop_img, crop_mask = ImageCutter.crop_img_and_mask(
                        img, mask, dy * step_y, dy * step_y + window_h,
                        dx * step_x, dx * step_x + window_w)
                    if ImageCutter.has_class(crop_mask, classes_to_get):
                        cropped_images.append(crop_img)
                        cropped_masks.append(crop_mask)

            if use_all_px:
                overlap_y = dy * step_y + window_h != current_height
                overlap_x = dx * step_x + window_w != current_width
                if overlap_y:
                    for dx in range(int((current_width - window_w) / step_x)):
                        crop_img, crop_mask = ImageCutter.crop_img_and_mask(
                            img, mask, current_height - window_h,
                            current_height, dx * step_x,
                            dx * step_x + window_w)
                        if ImageCutter.has_class(crop_mask, classes_to_get):
                            cropped_images.append(crop_img)
                            cropped_masks.append(crop_mask)

                if overlap_x:
                    for dy in range(int((current_height - window_h) / step_y)):
                        crop_img, crop_mask = ImageCutter.crop_img_and_mask(
                            img, mask, dy * step_y, dy * step_y + window_h,
                            current_width - window_w, current_width)
                        if ImageCutter.has_class(crop_mask, classes_to_get):
                            cropped_images.append(crop_img)
                            cropped_masks.append(crop_mask)

                if overlap_x and overlap_y:
                    crop_img, crop_mask = ImageCutter.crop_img_and_mask(
                        img, mask, current_height - window_h, current_height,
                        current_width - window_w, current_width)
                    if ImageCutter.has_class(crop_mask, classes_to_get):
                        cropped_images.append(crop_img)
                        cropped_masks.append(crop_mask)

        return cropped_images, cropped_masks, additional_list
Ejemplo n.º 3
0
     uniq = np.unique(label)
     if i in [25, 41, 14, 19, 43, 2, 5]:
         Xtest.append(images[i])
         Ytest.append(label)
         continue
     else:
         Xtrain.append(images[i])
         Ytrain.append(label)
         
 for image, label in zip(copy(Xtrain), copy(Ytrain)):
     uniq = np.unique(label)
     if 40 in uniq or 70 in uniq or 80 in uniq:
         Ytrain += [label] * 10
         Xtrain += [image] * 10
     
 Xtrain, Ytrain, _ = ImageCutter.image_and_mask_cutter(Xtrain, Ytrain, 256, 256, 128, 128, 0.05)
 Xtest, Ytest, _ = ImageCutter.image_and_mask_cutter(Xtest, Ytest, 256, 256, 128, 128, 0.05)
 
 Xtrain = np.asarray(Xtrain).astype(np.float32) / 255
 Xtrain = [i for i in Xtrain]
 Ytrain = np.asarray(Ytrain).astype(np.uint8) // 10
 Ytrain = [i for i in Ytrain]
 
 Xtest = np.asarray(Xtest).astype(np.float32) / 255
 Xtest = [i for i in Xtest]
 Ytest = np.asarray(Ytest).astype(np.uint8) // 10
 Ytest = [i for i in Ytest]
 
 data = Data(Xtrain, Ytrain)
 data = AffineAugment(num_matrices=1, noise_type='gaussian', keep_old_data=True)(data)
 data = ElasticAugment(num_maps=1, border_mode='reflect_101',  keep_old_data=True)(data)
Ejemplo n.º 4
0
    Xtest = []
    Ytest = []
    Xtrain = []
    Ytrain = []

    for i, label in enumerate(labels):
        uniq = np.unique(label)
        if i in [7, 11, 75, 99]:
            Xtest.append(images[i])
            Ytest.append(label)
            continue
        else:
            Xtrain.append(images[i])
            Ytrain.append(label)

    Xtrain, Ytrain, _ = ImageCutter.image_and_mask_cutter(
        Xtrain, Ytrain, 384, 384, 128, 128, 0.005)
    Xtest, Ytest, _ = ImageCutter.image_and_mask_cutter(
        Xtest, Ytest, 384, 384, 128, 128, 0.005)

    Xtrain = np.asarray(Xtrain).astype(np.float32) / 255
    Xtrain = [i for i in Xtrain]
    Ytrain = np.asarray(Ytrain).astype(np.uint8) // 10
    Ytrain = [i for i in Ytrain]

    Xtest = np.asarray(Xtest).astype(np.float32) / 255
    Xtest = [i for i in Xtest]
    Ytest = np.asarray(Ytest).astype(np.uint8) // 10
    Ytest = [i for i in Ytest]

    data = Data(Xtrain, Ytrain)
    data = AffineAugment(num_matrices=5,