Ejemplo n.º 1
0
def getOptions():

    parser = argparse.ArgumentParser(description='Test data loader.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    malpiOptions.addMalpiOptions( parser )
    args = parser.parse_args()
    malpiOptions.preprocessOptions(args)

    return args
Ejemplo n.º 2
0
    early.on_train_end()


# finished, final model:
    if save_model:
        vae.save_json("tf_vae/vae.json")

    return best_loss

if __name__ == "__main__":

    import argparse
    import malpiOptions

    parser = argparse.ArgumentParser(description='Test data loader.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--learning_rate', type=float, default=0.0001, help='Learning rate')
    parser.add_argument('--z_size', type=int, default=32, help='Latent space size')
    parser.add_argument('--batch_size', type=int, default=100, help='Mini-batch size')
    parser.add_argument('--kl_tolerance', type=float, default=0.5, help='Max KL tolerance')
    parser.add_argument('--epochs', type=int, default=100, help='Mini-batch size')

    malpiOptions.addMalpiOptions( parser )
    args = parser.parse_args()
    malpiOptions.preprocessOptions(args)

    if args.test_only:
        runTests(args)
        exit()

    main( args.dirs, z_size=args.z_size, batch_size=args.batch_size, learning_rate=args.learning_rate, kl_tolerance=args.kl_tolerance, epochs=args.epochs, save_model=False, verbose=True )
Ejemplo n.º 3
0
                        action='store_true',
                        help='start a new model from scratch?')
    parser.add_argument('--epochs',
                        default=10,
                        help='number of epochs to train for')
    parser.add_argument(
        '--val',
        help='File with one drive data directory per line for validation')
    parser.add_argument('--val_split',
                        type=float,
                        default=0.2,
                        help='Percent validation split')

    addMalpiOptions(parser)
    args = parser.parse_args()
    preprocessOptions(args)

    if len(args.dirs) == 0 and not (args.test_only or args.start_batch):
        parser.print_help()
        print("\nNo directories supplied")
        exit()

    if args.val is None:
        last = int(len(args.dirs) * args.val_split)
        np.random.shuffle(args.dirs)
        test = args.dirs[:last]
        train = args.dirs[last:]
        args.dirs = train
        args.val = test
        #print( "Train:\n{}".format( args.dirs ) )
        #print( "Test:\n{}".format( args.val ) )
Ejemplo n.º 4
0
def getOptions():

    parser = argparse.ArgumentParser(
        description='Train on robot image/action data.',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    #parser.add_argument('dirs', nargs='*', metavar="Directory", help='A directory containing recorded robot data')
    #parser.add_argument('-f', '--file', help='File with one directory per line')
    parser.add_argument(
        '--fc',
        action="store_true",
        default=False,
        help='Train a model with a fully connected layer (no RNN)')
    parser.add_argument(
        '--dk',
        action="store_true",
        default=False,
        help='Train a model with DonkeyCar style Convolution layers')
    parser.add_argument('--early',
                        action="store_true",
                        default=False,
                        help='Stop training early if learning plateaus')
    parser.add_argument('--runs',
                        type=int,
                        default=1,
                        help='How many runs to train')
    parser.add_argument('--name',
                        help='Display name for this training experiment')
    parser.add_argument(
        '--aux',
        default=None,
        help='Use this auxiliary data in place of standard actions')
    parser.add_argument('--model',
                        default=None,
                        help='A file containing weights to pre-load the model')
    parser.add_argument(
        '--val',
        default=None,
        help='A file with a list of directories to be used for validation')
    parser.add_argument('--val_split',
                        type=float,
                        default=0.2,
                        help='Percent validation split')
    parser.add_argument(
        '--notify',
        help='Email address to notify when the training is finished')
    #parser.add_argument('--test_only', action="store_true", default=False, help='run tests, then exit')
    parser.add_argument('--random',
                        action="store_true",
                        default=False,
                        help='Test an untrained model, then exit')
    parser.add_argument(
        '--aug',
        type=int,
        default=None,
        help=
        'Augment images by this factor. 2 = twice as many images, half of which are altered'
    )

    malpiOptions.addMalpiOptions(parser)
    args = parser.parse_args()
    malpiOptions.preprocessOptions(args)

    if len(args.dirs) == 0 and not args.test_only:
        parser.print_help()
        print("\nNo directories supplied")
        exit()

    if args.val is None:
        last = int(len(args.dirs) * args.val_split)
        np.random.shuffle(args.dirs)
        test = args.dirs[:last]
        train = args.dirs[last:]
        args.dirs = train
        args.val = test

    return args