Ejemplo n.º 1
0
import setup
setup.load()

import manageFiles
import recommender

recommender.parameters['threshold'] = 0.2
recommender.parameters['selection-step'] = 3
recommender.parameters['key'] = 'codigo'
recommender.parameters['inner-list'] = 'processo_seletivo'
recommender.parameters['candidates-list'] = 'candidatos'

root = '/home/mnf/reachr/projects/RecommenderSystem/test'
manageFiles.parameters['path'] = root + '/support/vagas.json'
recommender.parameters['input-jobs'] = manageFiles.read()

manageFiles.parameters['path'] = root + '/support/similiars.json'
recommender.parameters['input-similars'] = manageFiles.read()

output = recommender.run()
print(output)

manageFiles.parameters['path'] = root + '/support/recommendation.json'
manageFiles.write(output)
Ejemplo n.º 2
0
manageFiles.parameters['path'] = './support/vagas.json'
inputList = manageFiles.read()  # Le o arquivo

corpus = []
for doc in inputList:  # captura a descrição
    corpus.append(doc["desc"])

import preprocessor

preprocessor.parameters['corpus'] = corpus

X, Z = preprocessor.run()

print(X)
print(Z)

output_file = []
for i in range(0, X.shape[0]):
    output = {"titulo": "", "texto": "", "tokens": []}
    output["titulo"] = 'Código: {} - Título: {}'.format(
        inputList[i]["codigo"], inputList[i]["titulo"])
    output["texto"] = corpus[i]
    for j in range(0, X.shape[1]):
        if X[i, j] > 0:
            token = {"item": Z[j], "tfidf": X[i, j]}
            output['tokens'].append(token)
    output_file.append(output)

manageFiles.parameters['path'] = './support/processed.json'
manageFiles.write(output_file)
Ejemplo n.º 3
0
import setup

setup.load()

import manageFiles
import processor
import similarity

root = '/home/mnf/reachr/projects/RecommenderSystem/test'

processor.parameters['index'] = "codigo"
processor.parameters['properties'] = ["desc", "titulo", "area_atuacao"]
processor.parameters['current_path'] = root + "/support/vagas.json"
processor.parameters['new_path'] = root + "/support/new_vaga.json"

computed_similarity = processor.run()

manageFiles.parameters['path'] = root + '/support/similiars.json'
manageFiles.write(computed_similarity)

#test jaccard

import pandas as pd

similarity.parameters['matrix'] = pd.DataFrame(
    [[1, 0, 1, 0, 1], [0, 0, 1, 1, 1]], columns=list('ABCDE')).transpose()
print(similarity.run_jaccard())
Ejemplo n.º 4
0
def getAllJobs():
    #response = requests.get(parameters['url'])
    #return response;
    obj = manageFiles.read(root + "/support/vagas.json")
    return manageFiles.write(obj)
Ejemplo n.º 5
0
def postJobRecommendation(data):
    return manageFiles.write(data)
Ejemplo n.º 6
0
def getJobToRecommend():
    obj = manageFiles.read(root + "/support/new_vaga.json")
    return manageFiles.write(obj)
Ejemplo n.º 7
0
import setup
setup.load()

import manageFiles
import score

root = '/home/mnf/reachr/projects/RecommenderSystem/test'
manageFiles.parameters['path'] = root + '/support/similiars.json'

score.parameters['properties'] = ["desc", "titulo", "area_atuacao"]
score.parameters['weights'] = {"desc": 0.5, "titulo": 0.4, "area_atuacao": 0.1}
score.parameters['input'] = manageFiles.read()

manageFiles.write(score.run())
Ejemplo n.º 8
0
import setup
setup.load()

import manageFiles

expected_ret = {}

# Teste Leitura
ret = manageFiles.read('./support/vagas.json')
print(ret)
assert (isinstance(ret, list)), 'Erro ao abrir arquivo JSON'

# Teste Gravação
ret = manageFiles.write(ret)
print(ret)
assert (ret != 1), 'Erro ao gravar arquivo JSON'