Ejemplo n.º 1
0
def _start_workflow(blueprint_id, deployment_id, execution_id, op_name, sm):
    workflow_id = "hosts_software_" + op_name

    new_execution = models.Execution(
        id=execution_id,
        status=models.Execution.PENDING,
        created_at=str(datetime.now()),
        blueprint_id=blueprint_id,
        workflow_id=workflow_id,
        deployment_id=deployment_id,
        error="",
        parameters=[],
        is_system_workflow=False,
    )

    sm.put_execution(new_execution.id, new_execution)

    workflow = {"operation": "software_replacement_workflow.replace_host_software"}

    workflow_client().execute_workflow(
        workflow_id,
        workflow,
        blueprint_id=blueprint_id,
        deployment_id=deployment_id,
        execution_id=execution_id,
        execution_parameters={"op_name": op_name},
    )
Ejemplo n.º 2
0
def _start_workflow(blueprint_id, deployment_id, execution_id, op_name, sm):
    workflow_id = 'hosts_software_' + op_name

    new_execution = models.Execution(id=execution_id,
                                     status=models.Execution.PENDING,
                                     created_at=str(datetime.now()),
                                     blueprint_id=blueprint_id,
                                     workflow_id=workflow_id,
                                     deployment_id=deployment_id,
                                     error='',
                                     parameters=[],
                                     is_system_workflow=False)

    sm.put_execution(new_execution.id, new_execution)

    workflow = {
        'operation': 'software_replacement_workflow.replace_host_software'
    }

    workflow_client().execute_workflow(
        workflow_id,
        workflow,
        blueprint_id=blueprint_id,
        deployment_id=deployment_id,
        execution_id=execution_id,
        execution_parameters={'op_name': op_name})
Ejemplo n.º 3
0
    def execute_workflow(self,
                         deployment_id,
                         workflow_id,
                         parameters=None,
                         allow_custom_parameters=False,
                         force=False):
        deployment = self.get_deployment(deployment_id)

        if workflow_id not in deployment.workflows:
            raise manager_exceptions.NonexistentWorkflowError(
                'Workflow {0} does not exist in deployment {1}'.format(
                    workflow_id, deployment_id))
        workflow = deployment.workflows[workflow_id]

        self._verify_deployment_environment_created_successfully(deployment_id)

        # validate no execution is currently in progress
        if not force:
            executions = get_storage_manager().executions_list(
                deployment_id=deployment_id)
            running = [
                e.id for e in executions
                if get_storage_manager().get_execution(e.id).status not in
                models.Execution.END_STATES
            ]
            if len(running) > 0:
                raise manager_exceptions.ExistingRunningExecutionError(
                    'The following executions are currently running for this '
                    'deployment: {0}. To execute this workflow anyway, pass '
                    '"force=true" as a query parameter to this request'.format(
                        running))

        execution_parameters = \
            BlueprintsManager._merge_and_validate_execution_parameters(
                workflow, workflow_id, parameters, allow_custom_parameters)

        execution_id = str(uuid.uuid4())

        new_execution = models.Execution(
            id=execution_id,
            status=models.Execution.PENDING,
            created_at=str(datetime.now()),
            blueprint_id=deployment.blueprint_id,
            workflow_id=workflow_id,
            deployment_id=deployment_id,
            error='',
            parameters=self._get_only_user_execution_parameters(
                execution_parameters))

        get_storage_manager().put_execution(new_execution.id, new_execution)

        workflow_client().execute_workflow(
            workflow_id,
            workflow,
            blueprint_id=deployment.blueprint_id,
            deployment_id=deployment_id,
            execution_id=execution_id,
            execution_parameters=execution_parameters)

        return new_execution
    def execute_workflow(self, deployment_id, workflow_id,
                         parameters=None,
                         allow_custom_parameters=False, force=False):
        deployment = self.get_deployment(deployment_id)

        if workflow_id not in deployment.workflows:
            raise manager_exceptions.NonexistentWorkflowError(
                'Workflow {0} does not exist in deployment {1}'.format(
                    workflow_id, deployment_id))
        workflow = deployment.workflows[workflow_id]

        self._verify_deployment_environment_created_successfully(deployment_id)

        # validate no execution is currently in progress
        if not force:
            executions = get_storage_manager().executions_list(
                deployment_id=deployment_id)
            running = [
                e.id for e in executions if
                get_storage_manager().get_execution(e.id).status
                not in models.Execution.END_STATES]
            if len(running) > 0:
                raise manager_exceptions.ExistingRunningExecutionError(
                    'The following executions are currently running for this '
                    'deployment: {0}. To execute this workflow anyway, pass '
                    '"force=true" as a query parameter to this request'.format(
                        running))

        execution_parameters = \
            BlueprintsManager._merge_and_validate_execution_parameters(
                workflow, workflow_id, parameters, allow_custom_parameters)

        execution_id = str(uuid.uuid4())

        new_execution = models.Execution(
            id=execution_id,
            status=models.Execution.PENDING,
            created_at=str(datetime.now()),
            blueprint_id=deployment.blueprint_id,
            workflow_id=workflow_id,
            deployment_id=deployment_id,
            error='',
            parameters=self._get_only_user_execution_parameters(
                execution_parameters))

        get_storage_manager().put_execution(new_execution.id, new_execution)

        workflow_client().execute_workflow(
            workflow_id,
            workflow,
            blueprint_id=deployment.blueprint_id,
            deployment_id=deployment_id,
            execution_id=execution_id,
            execution_parameters=execution_parameters)

        return new_execution
    def execute_workflow(self, deployment_id, workflow_id):
        deployment = self.get_deployment(deployment_id)

        if workflow_id not in deployment.plan['workflows']:
            raise manager_exceptions.NonexistentWorkflowError(
                'Workflow {0} does not exist in deployment {1}'.format(
                    workflow_id, deployment_id))
        workflow = deployment.plan['workflows'][workflow_id]
        plan = deployment.plan

        execution_id = str(uuid.uuid4())
        response = workflow_client().execute_workflow(
            workflow_id,
            workflow, plan,
            blueprint_id=deployment.blueprint_id,
            deployment_id=deployment_id,
            execution_id=execution_id)
        # TODO raise error if there is error in response

        new_execution = models.Execution(
            id=execution_id,
            status=response['state'],
            internal_workflow_id=response['id'],
            created_at=str(response['created']),
            blueprint_id=deployment.blueprint_id,
            workflow_id=workflow_id,
            deployment_id=deployment_id,
            error='None')

        self.sm.put_execution(new_execution.id, new_execution)

        return new_execution
 def validate_blueprint(self, blueprint_id):
     blueprint = self.get_blueprint(blueprint_id)
     plan = blueprint.plan
     response = workflow_client().validate_workflows(plan)
     # TODO raise error if error
     return responses.BlueprintValidationStatus(
         blueprint_id=blueprint_id, status=response['status'])
    def _execute_system_workflow(self, deployment, wf_id, task_mapping,
                                 execution_parameters=None, timeout=0,
                                 created_at=None):
        """
        :param deployment: deployment for workflow execution
        :param wf_id: workflow id
        :param task_mapping: mapping to the system workflow
        :param execution_parameters: parameters for the system workflow
        :param timeout: 0 will return immediately; any positive value will
         cause this method to wait for the given timeout for the task to
         complete, and verify it finished successfully before returning
        :param created_at: creation time for the workflow execution object.
         if omitted, a value will be generated by this method.
        :return: async task object
        """
        execution_id = str(uuid.uuid4())  # will also serve as the task id
        execution_parameters = execution_parameters or {}

        # currently, deployment env creation/deletion are not set as
        # system workflows
        is_system_workflow = wf_id not in (
            'create_deployment_environment', 'delete_deployment_environment')

        execution = models.Execution(
            id=execution_id,
            status=models.Execution.PENDING,
            created_at=created_at or str(datetime.now()),
            blueprint_id=deployment.blueprint_id,
            workflow_id=wf_id,
            deployment_id=deployment.id,
            error='',
            parameters=self._get_only_user_execution_parameters(
                execution_parameters),
            is_system_workflow=is_system_workflow)

        self.sm.put_execution(execution.id, execution)

        async_task = workflow_client().execute_system_workflow(
            deployment, wf_id, execution_id, task_mapping,
            execution_parameters)

        if timeout > 0:
            try:
                # wait for the workflow execution to complete
                async_task.get(timeout=timeout, propagate=True)
            except Exception as e:
                # error message for the user
                error_msg =\
                    'Error occurred while executing the {0} system workflow '\
                    'for deployment {1}: {2} - {3}'.format(
                        wf_id, deployment.id, type(e).__name__, str(e))
                # adding traceback to the log error message
                tb = StringIO()
                traceback.print_exc(file=tb)
                log_error_msg = '{0}; traceback: {1}'.format(
                    error_msg, tb.getvalue())
                current_app.logger.error(log_error_msg)
                raise RuntimeError(error_msg)

            # verify the execution completed successfully
            execution = self.sm.get_execution(async_task.id)
            if execution.status != models.Execution.TERMINATED:
                raise RuntimeError(
                    'Failed executing the {0} system workflow for deployment '
                    '{1}: Execution did not complete successfully before '
                    'timeout ({2} seconds)'.format(
                        wf_id, deployment.id, timeout))

        return async_task
    def execute_workflow(self, deployment_id, workflow_id,
                         parameters=None,
                         allow_custom_parameters=False, force=False):
        deployment = self.get_deployment(deployment_id)

        if workflow_id not in deployment.workflows:
            raise manager_exceptions.NonexistentWorkflowError(
                'Workflow {0} does not exist in deployment {1}'.format(
                    workflow_id, deployment_id))
        workflow = deployment.workflows[workflow_id]

        self._verify_deployment_environment_created_successfully(deployment_id)

        transient_workers_config =\
            self._get_transient_deployment_workers_mode_config()
        is_transient_workers_enabled = transient_workers_config['enabled']

        self._check_for_active_executions(deployment_id, force,
                                          transient_workers_config)

        execution_parameters = \
            BlueprintsManager._merge_and_validate_execution_parameters(
                workflow, workflow_id, parameters, allow_custom_parameters)

        if is_transient_workers_enabled:
            # in this mode, we push the user execution object to storage
            # before executing the "_start_deployment_environment" system
            # workflow, to prevent from other executions to start running in
            # between the system workflow and the user workflow execution.
            # to keep correct chronological order, the system workflow's
            # "created_at" field is generated here.
            start_deployment_env_created_at_time = str(datetime.now())

        execution_id = str(uuid.uuid4())

        new_execution = models.Execution(
            id=execution_id,
            status=models.Execution.PENDING,
            created_at=str(datetime.now()),
            blueprint_id=deployment.blueprint_id,
            workflow_id=workflow_id,
            deployment_id=deployment_id,
            error='',
            parameters=self._get_only_user_execution_parameters(
                execution_parameters),
            is_system_workflow=False)

        self.sm.put_execution(new_execution.id, new_execution)

        if is_transient_workers_enabled:
            # initiating a workflow to start deployment workers
            wf_id = '_start_deployment_environment'
            deployment_env_start_task_name = \
                'cloudify_system_workflows.deployment_environment.start'

            self._execute_system_workflow(
                deployment, wf_id, deployment_env_start_task_name, timeout=300,
                created_at=start_deployment_env_created_at_time)

        # executing the user workflow
        workflow_client().execute_workflow(
            workflow_id,
            workflow,
            blueprint_id=deployment.blueprint_id,
            deployment_id=deployment_id,
            execution_id=execution_id,
            execution_parameters=execution_parameters)

        return new_execution
Ejemplo n.º 9
0
    def _execute_system_workflow(self,
                                 deployment,
                                 wf_id,
                                 task_mapping,
                                 execution_parameters=None,
                                 timeout=0,
                                 created_at=None):
        """
        :param deployment: deployment for workflow execution
        :param wf_id: workflow id
        :param task_mapping: mapping to the system workflow
        :param execution_parameters: parameters for the system workflow
        :param timeout: 0 will return immediately; any positive value will
         cause this method to wait for the given timeout for the task to
         complete, and verify it finished successfully before returning
        :param created_at: creation time for the workflow execution object.
         if omitted, a value will be generated by this method.
        :return: async task object
        """
        execution_id = str(uuid.uuid4())  # will also serve as the task id
        execution_parameters = execution_parameters or {}

        # currently, deployment env creation/deletion are not set as
        # system workflows
        is_system_workflow = wf_id not in ('create_deployment_environment',
                                           'delete_deployment_environment')

        execution = models.Execution(
            id=execution_id,
            status=models.Execution.PENDING,
            created_at=created_at or str(datetime.now()),
            blueprint_id=deployment.blueprint_id,
            workflow_id=wf_id,
            deployment_id=deployment.id,
            error='',
            parameters=self._get_only_user_execution_parameters(
                execution_parameters),
            is_system_workflow=is_system_workflow)

        self.sm.put_execution(execution.id, execution)

        async_task = workflow_client().execute_system_workflow(
            deployment, wf_id, execution_id, task_mapping,
            execution_parameters)

        if timeout > 0:
            try:
                # wait for the workflow execution to complete
                async_task.get(timeout=timeout, propagate=True)
            except Exception as e:
                # error message for the user
                error_msg =\
                    'Error occurred while executing the {0} system workflow '\
                    'for deployment {1}: {2} - {3}'.format(
                        wf_id, deployment.id, type(e).__name__, str(e))
                # adding traceback to the log error message
                tb = StringIO()
                traceback.print_exc(file=tb)
                log_error_msg = '{0}; traceback: {1}'.format(
                    error_msg, tb.getvalue())
                current_app.logger.error(log_error_msg)
                raise RuntimeError(error_msg)

            # verify the execution completed successfully
            execution = self.sm.get_execution(async_task.id)
            if execution.status != models.Execution.TERMINATED:
                raise RuntimeError(
                    'Failed executing the {0} system workflow for deployment '
                    '{1}: Execution did not complete successfully before '
                    'timeout ({2} seconds)'.format(wf_id, deployment.id,
                                                   timeout))

        return async_task
Ejemplo n.º 10
0
    def execute_workflow(self,
                         deployment_id,
                         workflow_id,
                         parameters=None,
                         allow_custom_parameters=False,
                         force=False):
        deployment = self.get_deployment(deployment_id)

        if workflow_id not in deployment.workflows:
            raise manager_exceptions.NonexistentWorkflowError(
                'Workflow {0} does not exist in deployment {1}'.format(
                    workflow_id, deployment_id))
        workflow = deployment.workflows[workflow_id]

        self._verify_deployment_environment_created_successfully(deployment_id)

        transient_workers_config =\
            self._get_transient_deployment_workers_mode_config()
        is_transient_workers_enabled = transient_workers_config['enabled']

        self._check_for_active_executions(deployment_id, force,
                                          transient_workers_config)

        execution_parameters = \
            BlueprintsManager._merge_and_validate_execution_parameters(
                workflow, workflow_id, parameters, allow_custom_parameters)

        if is_transient_workers_enabled:
            # in this mode, we push the user execution object to storage
            # before executing the "_start_deployment_environment" system
            # workflow, to prevent from other executions to start running in
            # between the system workflow and the user workflow execution.
            # to keep correct chronological order, the system workflow's
            # "created_at" field is generated here.
            start_deployment_env_created_at_time = str(datetime.now())

        execution_id = str(uuid.uuid4())

        new_execution = models.Execution(
            id=execution_id,
            status=models.Execution.PENDING,
            created_at=str(datetime.now()),
            blueprint_id=deployment.blueprint_id,
            workflow_id=workflow_id,
            deployment_id=deployment_id,
            error='',
            parameters=self._get_only_user_execution_parameters(
                execution_parameters),
            is_system_workflow=False)

        self.sm.put_execution(new_execution.id, new_execution)

        if is_transient_workers_enabled:
            # initiating a workflow to start deployment workers
            wf_id = '_start_deployment_environment'
            deployment_env_start_task_name = \
                'cloudify_system_workflows.deployment_environment.start'

            self._execute_system_workflow(
                deployment,
                wf_id,
                deployment_env_start_task_name,
                timeout=300,
                created_at=start_deployment_env_created_at_time)

        # executing the user workflow
        workflow_client().execute_workflow(
            workflow_id,
            workflow,
            blueprint_id=deployment.blueprint_id,
            deployment_id=deployment_id,
            execution_id=execution_id,
            execution_parameters=execution_parameters)

        return new_execution
Ejemplo n.º 11
0
 def cancel_workflow(self, execution_id):
     execution = self.get_execution(execution_id)
     workflow_client().cancel_workflow(
         execution.internal_workflow_id
     )
     return execution
Ejemplo n.º 12
0
 def get_workflows_states_by_internal_workflows_ids(self,
                                                    internal_wfs_ids):
     return workflow_client().get_workflows_statuses(internal_wfs_ids)