Ejemplo n.º 1
0
def main(argv, common_opts):
    args = parse_args(argv)
    seed_all(12345)
    init_algorithms(deterministic=True)
    torch.set_grad_enabled(False)

    device = common_opts['device']

    assert args.multicrop == False, 'TODO: Implement multi-crop for single image inference.'

    model = load_model(args.model).to(device).eval()

    input_specs: ImageSpecs = model.data_specs.input_specs

    image: PIL.Image.Image = PIL.Image.open(args.image, 'r')
    image.thumbnail((input_specs.width, input_specs.height))
    inp = input_specs.convert(image).to(device, torch.float32)

    output = model(inp[None, ...])[0]

    norm_skel3d = ensure_cartesian(output.to(CPU, torch.float64), d=3)

    fig = plt.figure(figsize=(16, 8))
    ax1 = fig.add_subplot(1, 2, 1)
    ax2: Axes3D = fig.add_subplot(1, 2, 2, projection='3d')

    ax1.imshow(input_specs.unconvert(inp.to(CPU)))
    plot_skeleton_on_axes3d(norm_skel3d, CanonicalSkeletonDesc, ax2, invert=True)

    plt.show()
Ejemplo n.º 2
0
def main(argv, common_opts):
    args = parse_args(argv)
    seed_all(12345)
    init_algorithms(deterministic=True)
    torch.set_grad_enabled(False)

    device = common_opts['device']

    if args.model:
        # model = load_model(args.model).to(device).eval()
        model = load_model(args.model).eval()

        data_specs = model.data_specs
    else:
        model = None
        data_specs = DataSpecs(
            ImageSpecs(224,
                       mean=ImageSpecs.IMAGENET_MEAN,
                       stddev=ImageSpecs.IMAGENET_STDDEV),
            JointsSpecs(CanonicalSkeletonDesc, n_dims=3),
        )

    dataset = get_dataset(args.dataset, data_specs, use_aug=False)

    app = MainGUIApp(dataset, device, model)
    app.mainloop()
Ejemplo n.º 3
0
def main(argv, common_opts):
    args = parse_args(argv)
    seed_all(12345)
    init_algorithms(deterministic=True)
    torch.set_grad_enabled(False)

    device = common_opts['device']

    model = load_model(args.model).to(device).eval()
    dataset = get_dataset(args.dataset, model.data_specs, use_aug=False)

    if args.multicrop:
        dataset.multicrop = True
        loader = make_unbatched_dataloader(dataset)
    else:
        loader = make_dataloader(dataset, batch_size=1)

    if args.dataset.startswith('h36m-'):
        known_depth = True
        included_joints = list(range(CanonicalSkeletonDesc.n_joints))
    else:
        known_depth = False
        included_joints = [
            CanonicalSkeletonDesc.joint_names.index(joint_name)
            for joint_name in VNect_Common_Skeleton
        ]
    print('Use ground truth root joint depth? {}'.format(known_depth))
    print('Number of joints in evaluation: {}'.format(len(included_joints)))

    df = run_evaluation_3d(model,
                           device,
                           loader,
                           included_joints,
                           known_depth=known_depth,
                           print_progress=True)

    print('### By sequence')
    print()
    print(
        tabulate(df.drop(columns=['activity_id']).groupby('seq_id').mean(),
                 headers='keys',
                 tablefmt='pipe'))
    print()
    print('### By activity')
    print()
    print(
        tabulate(df.drop(columns=['seq_id']).groupby('activity_id').mean(),
                 headers='keys',
                 tablefmt='pipe'))
    print()
    print('### Overall')
    print()
    print(
        tabulate(
            df.drop(columns=['activity_id', 'seq_id']).mean().to_frame().T,
            headers='keys',
            tablefmt='pipe'))
Ejemplo n.º 4
0
def main():

    args = parse_args()
    if (args.mode == 'I' or args.mode == 'i'):
        filename = os.path.basename(args.path)
        filename_noext = os.path.splitext(filename)[0]
        model = load_model(args.model).to(CPU).eval()
        coords_img, coords_raw, img_input, img_skele3d = infer_joints(model, args.path)
        # print(img_skele3d.shape)

        img_skele3d = PIL.Image.fromarray(img_skele3d)
        
        # Calculate step angle
        vector1 = coords_img[8,:2] - coords_img[10,:2]
        vecto2 = (0,-1)

        
        print(angleBetween(vector1, vecto2)*180/np.pi, "right")

        vector1 = coords_img[11,:2] - coords_img[13,:2]
        # vector1=(.5,0,0)
        vecto2 = (0,-1)
        print(angleBetween(vector1, vecto2)*180/np.pi, "left")

        draw_skele_on_image(img_input, coords_img[:,:2])
        # Used for qualitative evaluation
        # draw_color_joints(img_input, coords_img[:,:2])


        joints_loc = output_to_JSON(coords_raw, filename_noext)
        # img_skele3d.show()
        
        img_skele3d.save('./outputs/3d/' + filename_noext + '.png')
        img_input.save('./outputs/' + filename)
        #with open('./outputs/joint_loc.json', 'w') as fp:
        #    json.dump(joints_loc, fp, indent=4)
        MayaExporter.WriteToMayaAscii('./outputs/3d/' + filename_noext + '.ma', joints_loc)
        MayaExporter.WriteAtomFile('./outputs/3d/' + filename_noext + '_anim.atom', 'C:/Users/imagi/Documents/maya/projects/default/scenes/sk_mannikin_margipose.0007.ma', 1, 1, (coords_raw*100)) 


    if(args.mode =='D' or args.mode == 'd'):
        files = os.listdir(args.path)
        # print(files)
        start = time.time()
        model = load_model(args.model).to(CPU).eval()
        end = time.time()
        print(end-start, "To load Model")
        count = 0
        joints_loc_list = []
        for image in files:
            start = time.time()
            filename_noext = os.path.splitext(image)[0]
            coords_img, coords_raw, img_input, img_skele3d = infer_joints(model, args.path+image)
            # print(filename_noext)
            img_skele3d = PIL.Image.fromarray(img_skele3d)
                    
            draw_skele_on_image(img_input, coords_img[:,:2])
            # Used for qualitative evaluation
            # draw_color_joints(img_input, coords_img[:,:2])

            joints_loc = output_to_JSON(coords_raw, filename_noext)   

            img_skele3d.save('./outputs/3d/' + filename_noext + '.png')
            img_input.save('./outputs/' + image)
            joints_loc_list.append(joints_loc)
            count += 1
            print(time.time()-start, "(s)", "completed " + str(count) + "/" + str(len(files)))
            MayaExporter.WriteToMayaAscii('./outputs/3d/' + filename_noext + '.ma', joints_loc)
            MayaExporter.WriteAtomFile('./outputs/3d/' + filename_noext + '_anim.atom', 'C:/Users/imagi/Documents/maya/projects/default/scenes/sk_mannikin_margipose.0007.ma', 1, 1, (coords_raw*100)) 

    if(args.mode =='V' or args.mode == 'v'):
        filename = os.path.basename(args.path)
        filename_noext = os.path.splitext(filename)[0]
        (frameArray, fps) = VideoFrames.ExtractFrames(args.path)

        frameArray = np.asarray(frameArray, dtype=np.uint8)
        skel3DArray = np.zeros((480, 640, 3, frameArray.shape[3]), dtype=np.uint8)
        finalFrameArray = np.zeros((256, 256, 3, frameArray.shape[3]), dtype=np.uint8)
        strideAngles = np.zeros((frameArray.shape[3],3))
        # print(frameArray.shape[3])

        start = time.time()
        model = load_model(args.model).to(CPU).eval()
        end = time.time()
        print(end-start, "(s) to load Model")
        sign = -1


        for i in range(frameArray.shape[3]):
        # for i in range(10):
            start = time.time()
 
            img = PIL.Image.fromarray(frameArray[:,:,:,i][..., ::-1])
            
            coords_img, coords_raw, img_scaled, skel3DArray[:,:,:,i] = infer_joints(model, img)


            # Calculate step angle
            vector1 = coords_img[8,:2] - coords_img[10,:2]
            vecto2 = (0,-1)

            rightStride = angleBetween(vector1, vecto2)*180/np.pi
            # print(angleBetween(vector1, vecto2)*180/np.pi, "right")

            vector1 = coords_img[11,:2] - coords_img[13,:2]
            # vector1=(.5,0,0)
            vecto2 = (0,-1)
            leftStride = angleBetween(vector1, vecto2)*180/np.pi
            # print(angleBetween(vector1, vecto2)*180/np.pi, "left")
            strideAngles[i,0] = (i+1)/fps
            strideAngles[i,1] = rightStride
            strideAngles[i,2] = leftStride

            draw_skele_on_image(img_scaled, coords_img[:,:2])
            # draw_evaluation_image(img_scaled, coords_img[:,:2], rightStride, leftStride)

            # img3d = PIL.Image.fromarray(skel3DArray[:,:,:,i])
            finalFrameArray[:,:,:,i] = np.array(img_scaled, dtype=np.uint8)
            # skel3DArray[:,:,:,i] = np.array(img3d, dtype=np.uint8)
            print(time.time()-start, "(s)", "frames completed " + str(i+1) + "/" + str(frameArray.shape[3]))
            # img3d.save('./outputs/3d/'+'skel3d_'+str(i)+'.jpg')
        # PIL.Image.SAVE(skel3DArray[:,:,:,-1])
        # plt.imsave()
        # plt.show()
        VideoFrames.FrametoVid(finalFrameArray, skel3DArray, fps, filename_noext)
        plt.subplot(2,1,1)
        plt.plot(strideAngles[:,0], strideAngles[:,1], color='red')
        plt.title('Right Leg')
        plt.ylim(0,30)
        plt.ylabel('Rect Swing Angle (deg)')
        plt.xlim(0,6)
        plt.xlabel('(s)')


        plt.subplot(2,1,2)
        plt.plot(strideAngles[:,0], strideAngles[:,2], color='blue')
        plt.title('Left Leg')
        plt.ylim(0,30)
        plt.ylabel('Rect Swing Angle (deg)')
        plt.xlim(0,6)
        plt.xlabel('(s)')

        plt.tight_layout()
        plt.show()