Ejemplo n.º 1
0
    def minimize_this(self, variables):
        #print variables
        orders_df = self.testPolicy(symbol=self.symbol, sd=self.sd, ed=self.ed, sv=self.sv, variables=variables)

        #attempting to make this faster
        if self.stock_price_library is None:
            #pre-processing
            orders_df = orders_df.sort_values(['Date'])
            orders_column = orders_df['Date']
            start_date = orders_column.head(1).dt
            end_date = orders_column.tail(1).dt
            start_date = dt.datetime(start_date.year, start_date.month, start_date.day)
            end_date = dt.datetime(end_date.year, end_date.month, end_date.day)

            list_of_symbols = orders_df.Symbol.unique().tolist()  # This really makes me wish Python was typesafe

            self.stock_price_library = market.get_stock_prices(list_of_symbols, start_date, end_date)

        portvals_raw = market.compute_portvals_abridged_faster(orders_df, commission=self.commission,
                                                               impact=self.impact, stock_price_library=self.stock_price_library)

        # clean up
        portvals = market.extract_portvals_only(portvals_raw)

        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = market.compute_portval_stats(portvals, rfr=0.0, sf=252, sv=self.sv)
        if sharpe_ratio <=0:
            return sharpe_ratio*-10e6 #some big number we don't want
        print("sharpe is ", sharpe_ratio, "for ", self.symbol)
        return float(1)/sharpe_ratio #minimizing the inverse of sharpe will maximize sharpe
Ejemplo n.º 2
0
    def minimize_this(self, variables):
        if self.verbose:
            print variables

        orders_df = self.testPolicy(symbol=self.symbol,
                                    sd=self.sd,
                                    ed=self.ed,
                                    sv=self.sv,
                                    variables=variables)

        #attempting to make this faster
        if self.stock_price_library is None:
            self.stock_price_library = market.get_stock_prices([self.symbol],
                                                               self.sd,
                                                               self.ed)

        portvals_raw = market.compute_portvals_abridged_faster(
            orders_df,
            commission=self.commission,
            impact=self.impact,
            stock_price_library=self.stock_price_library)

        portvals = portvals_raw[portvals_raw.columns[0]]

        cum_ret = portvals[-1] / float(self.sv) - 1  #lightning optimization

        return -cum_ret  #I apply a negative so negative returns are positive, and positive returns are negative
Ejemplo n.º 3
0
def rolling_STD(symbol='JPM', sd=dt.datetime(2008,1,1), ed=dt.datetime(2009,12,31)):
    sd_left_bracket = sd - dt.timedelta(days=40) #we need to go back in time to get data for SMA. #40 days is conservative
    STD_df = market.make_df_to_match_trading_days(colnames=['Date', 'STD20'], symbol='JPM', sd=sd_left_bracket, ed=ed)
    stock_price_library = market.get_stock_prices([symbol], sd_left_bracket, ed)

    STD_calcs = stock_price_library.rolling(window=20, min_periods=20, center=False).std()
    STD_df['STD20'] = STD_calcs[symbol]

    return STD_df[sd:ed] #returns the 20 day rolling mean for the symbol you feed it
Ejemplo n.º 4
0
def plot_prices(symbol='JPM', sd=dt.datetime(2008,1,1), ed=dt.datetime(2009,12,31)):
    stock_price_library = market.get_stock_prices([symbol], sd, ed)
    #print stock_price_library

    price_line = plt.plot(stock_price_library.index, stock_price_library[symbol], label=symbol)
    plt.setp(price_line, color='r', linewidth=1.0)

    plt.xlabel("Date")
    plt.ylabel(("Stock Price"))
    plt.title("Stock Price vs Date")

    return #fig #generate some plots
Ejemplo n.º 5
0
def get_daily_returns(symbol='JPM',
                      sd=dt.datetime(2008, 1, 1),
                      ed=dt.datetime(2009, 12, 31)):
    daily_return_df = market.make_df_to_match_trading_days(
        colnames=['Date', 'bb1', 'bb2'], symbol=symbol, sd=sd, ed=ed)
    stock_price_library = market.get_stock_prices([symbol], sd, ed)
    daily_returns = stock_price_library[symbol]
    daily_returns[1:] = (
        stock_price_library[symbol].ix[1:] /
        stock_price_library[symbol].ix[:-1].values) - 1  # from lecture
    daily_returns.ix[0] = 0
    daily_return_df['dr'] = daily_returns
    return daily_return_df
Ejemplo n.º 6
0
    def minimize_this(self, variables):
        #print variables
        orders_df = self.testPolicy(symbol=self.symbol,
                                    sd=self.sd,
                                    ed=self.ed,
                                    sv=self.sv,
                                    variables=variables)

        #attempting to make this faster
        if self.stock_price_library is None:
            self.stock_price_library = market.get_stock_prices([self.symbol],
                                                               self.sd,
                                                               self.ed)

        portvals_raw = market.compute_portvals_abridged_faster(
            orders_df,
            commission=self.commission,
            impact=self.impact,
            stock_price_library=self.stock_price_library)

        # sddr = daily_returns.std()
        #
        # # back calculate daily risk free rate given the annual risk free rate
        # daily_rfr = (1 + rfr) ** (1 / float(252)) - 1
        #
        # sr = (daily_returns - daily_rfr).mean() / (daily_returns - daily_rfr).std()
        #
        # # Convert to annualized sharpe ratio
        # K = sf ** (1 / float(2))
        # sr = K * sr

        # clean up
        portvals = market.extract_portvals_only(portvals_raw)

        cum_ret, avg_daily_ret, std_daily_ret, sharpe_ratio = market.compute_portval_stats(
            portvals, rfr=0.0, sf=252, sv=self.sv)
        if sharpe_ratio <= 0:
            return sharpe_ratio * -10e6  #some big number we don't want
        print("sharpe is ", sharpe_ratio, "for ", self.symbol)
        print("cumulative return is ", cum_ret)
        return float(
            1
        ) / sharpe_ratio  #minimizing the inverse of sharpe will maximize sharpe
Ejemplo n.º 7
0
def testPolicy(symbol="JPM", sd=dt.datetime(2008,1,1), ed=dt.datetime(2009,12,31), sv=100000):
    orders_df = market.make_df_to_match_trading_days(colnames=['Date','Symbol', 'Order', 'Shares'],
                                                     symbol='JPM', sd=sd, ed=ed)

    stock_price_library = market.get_stock_prices([symbol], sd, ed)
    day_to_day_difference = stock_price_library.diff()
    day_to_day_difference = day_to_day_difference[symbol].shift(-1) #negative values mean the price will decrease tomorrow

    #iterate through stock price library and short before all the drops and buy for all the gains

    orders_df['Symbol'] = symbol #assign to JPM
    orders_df['Order'] = "" #initialize with no orders
    orders_df['Shares'] = 0.0 #initialize with no shares
    orders_df['Date'] = orders_df.index


    state = 0

    for row in orders_df.itertuples(index=True):
        order_date = getattr(row, 'Date')
        symbol = getattr(row, 'Symbol')
        # print "The symbol is ", symbol
        order = getattr(row, 'Order')
        shares = getattr(row, 'Shares')

        if day_to_day_difference.loc[order_date] < 0: #this means the next day will show a decline
            orders_df.set_value(order_date, 'Order', 'SELL')
            orders_df.set_value(order_date, 'Shares', abs(-1000 - state))
            state = -1000 #short state

        if day_to_day_difference.loc[order_date] > 0: #this means the next day will show a rise
            orders_df.set_value(order_date, 'Order', 'BUY')
            orders_df.set_value(order_date, 'Shares', abs(1000 - state))
            state = 1000 #long state
    #my best policy (based on seeing the future)

    return orders_df
Ejemplo n.º 8
0
def testPolicy(symbol="JPM",
               sd=dt.datetime(2008, 1, 1),
               ed=dt.datetime(2009, 12, 31),
               sv=100000):
    orders_df = market.make_df_to_match_trading_days(
        colnames=['Date', 'Symbol', 'Order', 'Shares'],
        symbol='JPM',
        sd=sd,
        ed=ed)

    stock_price_library = market.get_stock_prices([symbol], sd, ed)
    #iterate through stock price library and short before all the drops and buy for all the gains

    orders_df['Symbol'] = symbol  #assign to JPM
    orders_df['Order'] = ""  #initialize with no orders
    orders_df['Shares'] = 0.0  #initialize with no shares
    orders_df['Date'] = orders_df.index

    state = 0
    short_price = 0.0
    days_in_short = 0

    #load indicators
    bollinger_df = indicators.get_bollinger(symbol, sd=sd, ed=ed)
    STOK_df = indicators.stochastic_oscillator_20(symbol, sd=sd, ed=ed)
    SMA_df = indicators.SMA(symbol, sd=sd, ed=ed)

    for row in orders_df.itertuples(index=True):
        order_date = getattr(row, 'Date')
        symbol = getattr(row, 'Symbol')
        # print "The symbol is ", symbol
        order = getattr(row, 'Order')
        shares = getattr(row, 'Shares')

        bollinger_high_today = bollinger_df.loc[order_date]['bb1']
        bollinger_low_today = bollinger_df.loc[order_date]['bb2']
        STOK_D_today = STOK_df.loc[order_date]['%D']
        stock_price_today = stock_price_library.loc[order_date][symbol]
        P_over_SMA_today = SMA_df.loc[order_date]['P/SMA']

        total_votes = []
        bb_vote = 0
        bb_weight = 1
        stochastic_vote = 0
        stochastic_weight = 1
        sma_vote = 0
        sma_weight = 0.5

        if stock_price_today > bollinger_high_today:
            bb_vote = -1  #sell!

        elif stock_price_today < bollinger_low_today:
            bb_vote = 1  #buy!

        if STOK_D_today < 20:
            stochastic_vote = 1  #buy!

        elif STOK_D_today > 80:
            stochastic_vote = -1  #get out of there!

        if P_over_SMA_today < 0.7:
            sma_vote = -1  #looks like a selling opp

        total_votes.append(bb_vote * bb_weight)
        total_votes.append(stochastic_vote * stochastic_weight)
        total_votes.append(sma_vote * sma_weight)

        average_vote = sum(total_votes) / len(total_votes)

        if state < 0:
            days_in_short += 1

        if state < 0 and stock_price_today > 1.2 * short_price or days_in_short > 45:
            #if the price has risen 20% above our short price
            #or if we have been in a short position for more than 45
            #get out of our position and wait for next move.
            orders_df.set_value(order_date, 'Order', 'BUY')
            orders_df.set_value(order_date, 'Shares', abs(0 - state))
            state = 0  #reset
            days_in_short = 0

        else:

            if average_vote < 0:  #this means I want to sell
                if abs(-1000 -
                       state) == 0:  #legality check for sale transaction
                    pass
                else:
                    orders_df.set_value(order_date, 'Order', 'SELL')
                    orders_df.set_value(order_date, 'Shares',
                                        abs(-1000 - state))
                    short_price = stock_price_today
                    state = -1000  #short state

            if average_vote > 0:  #this means I want to buy
                if abs(1000 - state) == 0:  #legality check for buy transaction
                    pass
                else:
                    orders_df.set_value(order_date, 'Order', 'BUY')
                    orders_df.set_value(order_date, 'Shares',
                                        abs(1000 - state))
                    state = 1000  #long state
                    days_in_short = 0

            else:
                pass
        #my best policy (based on seeing the future)

    return orders_df