Ejemplo n.º 1
0
    def test_feature_vectors_calculator_cif(self):
        """
        Test for cif file feature vectors calculator
        """

        # logging test start
        LOGGER.info('Feature vectors calculator test start')
        # create MassTransit emulation dict
        FEATURE_VECTORS_CALCULATOR_TEST['event_callback'] = feature_vectors_calculated
        FEATURE_VECTORS_CALCULATOR_TEST['command_callback'] = feature_vectors_calculated
        feature_vectors_calculated_publisher = MTPublisher(FEATURE_VECTORS_CALCULATOR_TEST)
        # create valid message for send
        message_body = {
            'CorrelationId': 'c1cc1111-5d8b-0015-16ec-08d52f4261af',
            'Fingerprints': [
                {'Type': 'universal	'}
            ],
            'FileType': 'cif'
        }
        file_to_send = open(self.test_file_cif, 'rb')
        REDIS_CLIENT.set(
            '{}-file'.format(message_body['CorrelationId']),
            file_to_send.read()
        )
        file_to_send.close()
        # send message
        fetch_token(self.oauth)
        feature_vectors_calculated_publisher.publish(message_body)
        time.sleep(10)
        self.assertEqual(True, FEATURE_VECTORS_CALCULATED_FLAG)
Ejemplo n.º 2
0
    def test_feature_vectors_calculator_failed(self):
        """
        Test for feature vectors calculator failed case
        """

        # logging test start
        LOGGER.info('Feature vectors calculator failed case test start')
        # create MassTransit emulation dict
        FEATURE_VECTORS_CALCULATOR_FAIL_TEST['event_callback'] = feature_vectors_calculation_failed
        FEATURE_VECTORS_CALCULATOR_FAIL_TEST['command_callback'] = feature_vectors_calculation_failed
        feature_vectors_calculation_failed_publisher = MTPublisher(FEATURE_VECTORS_CALCULATOR_FAIL_TEST)

        # create valid message for send
        message_body = {
            'CorrelationId': 'c1cc1111-5d8b-0015-16ec-08d52f4161fb',
            'Fingerprints': [
                {'Type': 'DESC'},
                {'Type': 'FCFC', 'Size': 512, 'Radius': 3}
            ],
            'FileType': 'sdf'
        }

        REDIS_CLIENT.set(
            '{}-file'.format(message_body['CorrelationId']),
            'empty'
        )

        # send message
        fetch_token(self.oauth)
        feature_vectors_calculation_failed_publisher.publish(message_body)

        self.assertEqual(True, FEATURE_VECTORS_CALCULATION_FAILED_FLAG)
Ejemplo n.º 3
0
    def test_properties_predicted_dnn(self):
        self.test_file = 'dnn_model_dataset.h5'
        dnn_dataset_blob_id = get_blob_id(self)
        self.test_file = 'dnn_model.h5'
        dnn_blob_id = get_blob_id(self)

        LOGGER.info('Properties predicted test start')
        PROPERTIES_PREDICTED_TEST[
            'event_callback'] = properties_predicted
        PROPERTIES_PREDICTED_TEST[
            'command_callback'] = properties_predicted
        message_body = {
            'ParentId': self.parent_id,
            'FolderId': self.user_id,
            'FolderName': 'test_dnn.prediction',
            'DatasetFileName': 'test_dnn',
            'DatasetBlobId': dnn_dataset_blob_id,
            'DatasetBucket': self.user_id,
            'ModelBlobId': dnn_blob_id,
            'ModelBucket': CLASSIC_CLASSIFICATION_MODEL_BUCKET,
            'FingerprintRadius': 3,
            'FingerprintSize': 1024,
            'FingerprintType': 1,
            'PrimaryIdField': 'Soluble',
            'Id': 'd397a097-68eb-464a-86b2-abd2315daebf',
            'UserId': self.user_id,
            'CorrelationId': 'c1cc0000-5d8b-0015-16ec-08d52f4162fe'
        }

        properties_predicted_publisher = MTPublisher(
            PROPERTIES_PREDICTED_TEST)
        properties_predicted_publisher.publish(message_body)
Ejemplo n.º 4
0
    def test_regression_properties_predicted(self):
        """
        Test for 'regression classic properties successful predicted' workflow
        """

        # logging test start
        LOGGER.info('Regresion properties predicted test start')
        # create MassTransit emulation dict
        PROPERTIES_PREDICTED_TEST['event_callback'] = properties_predicted
        PROPERTIES_PREDICTED_TEST['command_callback'] = properties_predicted
        properties_predicted_publisher = MTPublisher(PROPERTIES_PREDICTED_TEST)

        # create valid message for send
        message_body = {
            'ParentId': self.parent_id,
            'FolderId': self.user_id,
            'FolderName': 'test_regression_prediction',
            'DatasetFileName': 'test',
            'DatasetBlobId': self.source_blob_id,
            'DatasetBucket': self.user_id,
            'ModelBlobId': ELASTIC_NETWORK_MODEL_BLOB_ID,
            'ModelBucket': CLASSIC_CLASSIFICATION_MODEL_BUCKET,
            'Id': 'd397a097-68eb-464a-86b2-abd2315ddebf',
            'UserId': self.user_id,
            'CorrelationId': 'c1cc0000-5d8b-0015-16ec-08d52f4161fe'
        }
        # send message
        fetch_token(self.oauth)
        properties_predicted_publisher.publish(message_body)

        self.assertEqual(True, CLASSIC_CLASSIFICATION_PREDICTED_FLAG)
Ejemplo n.º 5
0
    def test_classic_classification_report_generation(self):
        """
        Test for 'generate report' workflow
        """

        # logging test start
        LOGGER.info('Model trained test start')
        # create MassTransit emulation dict
        GENERATE_REPORT_TEST[
            'event_callback'] = classic_classification_report_generation
        GENERATE_REPORT_TEST[
            'command_callback'] = classic_classification_report_generation
        generate_report_publisher = MTPublisher(GENERATE_REPORT_TEST)
        models_blob_ids = [
            NAIVE_BAYES_MODEL_BLOB_ID,
            LOGISTIC_REGRESSION_MODEL_BLOB_ID
        ]
        # create valid message for send
        message_body = {
            'CorrelationId': 'c1cc0000-5d8b-0015-16ac-08d52f4161fe',
            'ParentId': self.parent_id,
            'TimeStamp': 'time stamp there',
            'Models': create_models_data(models_blob_ids),
            'UserId': self.user_id
        }
        # send message
        fetch_token(self.oauth)
        generate_report_publisher.publish(message_body)

        self.assertEqual(True, True)
Ejemplo n.º 6
0
    def test_classic_classification_model_training_naive_bayes(self):
        """
        Test for 'model train' workflow
        """

        # logging test start
        LOGGER.info('Model trained test start')
        # create MassTransit emulation dict
        MODEL_TRAINED_TEST['event_callback'] = classic_classification_train_naive_bayes
        MODEL_TRAINED_TEST['command_callback'] = classic_classification_train_naive_bayes
        model_trained_publisher = MTPublisher(MODEL_TRAINED_TEST)
        # create valid message for send
        message_body = {
            'SourceBlobId': self.source_blob_id,
            'SourceBucket': self.user_id,
            'ParentId': self.parent_id,
            'Name': 'test_classic_classification_naive_bayes',
            'Method': CODES[NAIVE_BAYES],
            'ClassName': 'Soluble',
            'SubSampleSize': 1.0,
            'TestDatasetSize': 0.2,
            'KFold': 5,
            'Fingerprints': [
                {'Type': 'DESC'},
                {'Type': 'MACCS'},
                {'Type': 'AVALON', 'Size': 512},
                {'Type': 'FCFC', 'Size': 512, 'Radius': 3}
            ],
            'CorrelationId': 'c1cc0000-5d8b-0015-2aab-08d52f3ea201',
            'UserId': self.user_id,
            'Scaler': 'Standard',
            'HyperParameters': {
                'optimizationMethod': 'default',
                'numberOfIterations': 100
            },
            'DnnLayers': None,
            'DnnNeurons': None
        }
        # send message
        fetch_token(self.oauth)
        model_trained_publisher.publish(message_body)
        # wait while model training
        time.sleep(10)

        self.assertEqual(True, CLASSIC_CLASSIFICATION_NAIVE_TRAINED_FLAG)
Ejemplo n.º 7
0
    def test_predictor_fail_event(self):
        """
        Test for 'properties prediction failed' workflow
        """

        # logging test start
        LOGGER.info('Predictor fail test start')
        # create MassTransit emulation dict
        PREDICTOR_FAIL_TEST['event_callback'] = predictor_fail
        PREDICTOR_FAIL_TEST['command_callback'] = predictor_fail
        fail_predictor_publisher = MTPublisher(PREDICTOR_FAIL_TEST)
        # create invalid message for send
        message_body = {'123': 123}
        # send message
        fetch_token(self.oauth)
        fail_predictor_publisher.publish(message_body)

        self.assertEqual(True, PREDICTOR_FAIL_FLAG)
Ejemplo n.º 8
0
    def test_modeler_fail_event(self):
        """
        Test for 'modeling failed' workflow
        """

        # logging test start
        LOGGER.info('Modeler fail test start')
        # create MassTransit emulation dict
        MODELER_FAIL_TEST['event_callback'] = modeler_fail
        MODELER_FAIL_TEST['command_callback'] = modeler_fail
        fail_modeler_publisher = MTPublisher(MODELER_FAIL_TEST)
        # create invalid message for send
        message_body = {'123': 123}
        # send message
        fetch_token(self.oauth)
        fail_modeler_publisher.publish(message_body)

        self.assertEqual(True, MODELER_FAIL_FLAG)
Ejemplo n.º 9
0
    def test_classic_classifier_single_properties_prediction(self):
        """
        Test for classic regressor training optimizer
        """

        # logging test start
        LOGGER.info('Classic regression training optimizer test start')
        # create MassTransit emulation dict
        PREDICT_SINGLE_STRUCTURE_TEST[
            'event_callback'] = classification_single_structure_predicted
        PREDICT_SINGLE_STRUCTURE_TEST[
            'command_callback'] = classification_single_structure_predicted
        single_structure_property_predicted_publisher = MTPublisher(
            PREDICT_SINGLE_STRUCTURE_TEST)

        # create valid message for send
        message_body = {
            'CorrelationId': 'c1cc0000-5d8b-0015-16ec-08d52f4161fb',
            'Id': 'd397a097-68eb-464a-86b2-abd2315ddeba',
            'Structure': '\n  Ketcher  5 71818102D 1   1.00000     0.00000     0\n\n 13 13  0     0  0            999 V2000\n   -2.3818   -0.6252    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0\n   -1.5159   -0.1254    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0\n   -1.5157    0.8745    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0\n   -0.6501   -0.6254    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0\n    0.2159   -0.1256    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0\n    0.2162    0.8747    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0\n    1.0824    1.3752    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0\n    1.9483    0.8753    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0\n    1.9479   -0.1251    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0\n    1.0818   -0.6256    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0\n    1.0820   -1.6254    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0\n    1.9479   -2.1252    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0\n    0.2161   -2.1254    0.0000 O   0  0  0  0  0  0  0  0  0  0  0  0\n  1  2  1  0  0  0  0\n  2  3  2  0  0  0  0\n  2  4  1  0  0  0  0\n  4  5  1  0  0  0  0\n  5  6  2  0  0  0  0\n  6  7  1  0  0  0  0\n  7  8  2  0  0  0  0\n  8  9  1  0  0  0  0\n  9 10  2  0  0  0  0\n  5 10  1  0  0  0  0\n 10 11  1  0  0  0  0\n 11 12  1  0  0  0  0\n 11 13  2  0  0  0  0\nM  END\n',
            'Format': 'MOL',
            'PropertyName': 'Soluble',
            'Models': [
                {
                    'Id': str(uuid.uuid1()),
                    'Blob': {
                        'id': LOGISTIC_REGRESSION_MODEL_BLOB_ID,
                        'bucket': CLIENT_ID
                    }
                },
                {
                    'Id': str(uuid.uuid1()),
                    'Blob': {
                        'id': NAIVE_BAYES_MODEL_BLOB_ID,
                        'bucket': CLIENT_ID
                    }
                }
            ]
        }
        # send message
        fetch_token(self.oauth)
        single_structure_property_predicted_publisher.publish(message_body)

        self.assertEqual(True, CLASSIFICATION_SINGLE_STRUCTURE_PREDICTED_FLAG)
Ejemplo n.º 10
0
    def test_regression_model_trained_event(self):
        """
        Test for 'classic regression model successful trained' workflow
        """

        # logging test start
        LOGGER.info('Regression model trained test start')
        # create MassTransit emulation dict
        MODEL_TRAINED_TEST['event_callback'] = classic_regression_train
        MODEL_TRAINED_TEST['command_callback'] = classic_regression_train
        model_trained_publisher = MTPublisher(MODEL_TRAINED_TEST)
        # create valid message for send
        message_body = {
            'CorrelationId': 'c1cc0000-5d8b-0015-2aab-08d52f3ea203',
            'SourceBlobId': self.source_blob_id,
            'SourceBucket': self.user_id,
            'ParentId': self.parent_id,
            'Name': 'test_regression',
            'Method': CODES[ELASTIC_NETWORK],
            'ClassName': 'logS',
            'SubSampleSize': 1.0,
            'TestDatasetSize': 0.2,
            'KFold': 2,
            'Fingerprints': [{'Type': 'ECFP', 'Radius': 4, 'Size': 512}],
            'UserId': self.user_id,
            'Scaler': 'Standard',
            'HyperParameters': {
                'OptimizationMethod': 'default',
                'NumberOfIterations': 100
            },
            'DnnLayers': None,
            'DnnNeurons': None
        }
        # send message
        fetch_token(self.oauth)
        model_trained_publisher.publish(message_body)
        # wait while model training
        time.sleep(10)

        self.assertEqual(True, CLASSIC_REGRESSION_TRAINED_FLAG)
Ejemplo n.º 11
0
    def test_dnn_classifying_model_trained_event(self):
        """
        Test for 'DNN classifying model successful trained' workflow
        """

        # logging test start
        LOGGER.info('DNN classifying model trained test start')
        # create MassTransit emulation dict
        MODEL_TRAINED_TEST['event_callback'] = callback_models_trained
        MODEL_TRAINED_TEST['command_callback'] = callback_models_trained
        model_trained_publisher = MTPublisher(MODEL_TRAINED_TEST)
        # create valid message for send
        message_body = {
            'SourceBlobId': self.source_blob_id,
            'SourceBucket': self.user_id,
            'ParentId': self.parent_id,
            'Name': 'test_dnn_classifying',
            'SourceFileName': 'test.sdf',
            'Method': CODES[DNN_CLASSIFIER],
            'ClassName': 'Soluble',
            'SubSampleSize': 1.0,
            'TestDatasetSize': 0.2,
            'KFold': 2,
            'Fingerprints': [{'Type': 'ECFP', 'Radius': 2, 'Size': 512}],
            'CorrelationId': 'c1cc0000-5d8b-0015-2aab-08d52f3ea221',
            'UserId': self.user_id,
            'Scaler': 'Standard',
            'HyperParameters': {
                'optimizationMethod': 'default',
                'numberOfIterations': 100
            },
            'DnnLayers': 2,
            'DnnNeurons': 128
        }

        # send message
        fetch_token(self.oauth)
        model_trained_publisher.publish(message_body)
Ejemplo n.º 12
0
    def test_training_optimizer_fail(self):
        """
        Test for classic regressor training optimizer
        """

        # logging test start
        LOGGER.info('Training optimizer failed test start')
        # create MassTransit emulation dict
        OPTIMIZE_TRAINING_FAIL_TEST[
            'event_callback'] = training_optimizer_fail
        OPTIMIZE_TRAINING_FAIL_TEST[
            'command_callback'] = training_optimizer_fail
        properties_predicted_publisher = MTPublisher(
            OPTIMIZE_TRAINING_FAIL_TEST)

        # create valid message for send
        message_body = {
            'Methods': []
        }
        # send message
        fetch_token(self.oauth)
        properties_predicted_publisher.publish(message_body)

        self.assertEqual(True, TRAINING_OPTIMIZER_FAIL_FLAG)
Ejemplo n.º 13
0
    def test_classifier_training_optimizer(self):
        """
        Test for classic classifier training optimizer
        """

        # logging test start
        LOGGER.info('Classic classification training optimizer test start')
        # create MassTransit emulation dict
        OPTIMIZE_TRAINING_TEST['event_callback'] = regression_training_optimized
        OPTIMIZE_TRAINING_TEST['command_callback'] = regression_training_optimized
        training_optimized_publisher = MTPublisher(OPTIMIZE_TRAINING_TEST)

        # create valid message for send
        message_body = {
            'CorrelationId': 'c1ca0000-5d8b-0015-16ec-08d52f4161fe',
            'Id': 'd397a097-68eb-464a-86b2-abd2315ddebf',
            'UserId': self.user_id,
            'SourceFileName': 'FileNameThere',
            'TargetFolderId': self.parent_id,
            'TimeStamp': '00',
            'SourceBlobId': self.source_blob_id,
            'SourceBucket': self.user_id,
            'Methods': [CODES[NAIVE_BAYES], CODES[LOGISTIC_REGRESSION]],
            'ClassName': 'Soluble',
            'HyperParameters': {
                'NumberOfIterations': 100,
                'OptimizationMethod': 'default'
            },
            'DnnLayers': None,
            'DnnNeurons': None
        }
        # send message
        fetch_token(self.oauth)
        training_optimized_publisher.publish(message_body)

        self.assertEqual(True, REGRESSOR_TRAINING_OPTIMIZED)