Ejemplo n.º 1
0
	def build_network(self):
		self.options = self.config["options"]
		self.options["batch_size"] = self.batch_size
		self.highway_layer_num = self.options["highway_layer_num"]
		self.with_highway = self.options["with_highway"]
		self.wd = self.config.get("weight_decay", None)
		self.l2_reg = float(self.config["l2_reg"])

		in_question_repres = tf.nn.dropout(self.s1_emb, self.dropout_keep_prob)
		in_passage_repres = tf.nn.dropout(self.s2_emb, self.dropout_keep_prob)

		input_dim = self.emb_size

		# ======Highway layer======
		if self.with_highway:
			with tf.variable_scope(self.scope+"-input_highway"):
				in_question_repres = match_utils.multi_highway_layer(in_question_repres, input_dim, self.highway_layer_num)
				tf.get_variable_scope().reuse_variables()
				in_passage_repres = match_utils.multi_highway_layer(in_passage_repres, input_dim, self.highway_layer_num)

		# ========Bilateral Matching=====
		with tf.variable_scope(self.scope+"-bilateral_matching"): 
			(match_representation, match_dim) = match_utils.bilateral_match_func(
						in_question_repres, in_passage_repres,
						self.sent1_token_len, self.sent2_token_len, 
						self.sent1_token_mask, self.sent2_token_mask, input_dim, self.config["mode"], 
						options=self.options, dropout_rate=self.dropout_keep_prob)
			self.output_features = match_representation

		#========Prediction Layer=========
		with tf.variable_scope(self.scope+"-prediction"): 
			# match_dim = 4 * self.options.aggregation_lstm_dim
			w_0 = tf.get_variable("w_0", [match_dim, match_dim/2], dtype=tf.float32)
			b_0 = tf.get_variable("b_0", [match_dim/2], dtype=tf.float32)
			w_1 = tf.get_variable("w_1", [match_dim/2, self.num_classes],dtype=tf.float32)
			b_1 = tf.get_variable("b_1", [self.num_classes],dtype=tf.float32)

			# if is_training: match_representation = tf.nn.dropout(match_representation, (1 - options.dropout_rate))
			logits = tf.matmul(match_representation, w_0) + b_0
			logits = tf.tanh(logits)
			logits = tf.nn.dropout(logits, (self.dropout_keep_prob))
			self.estimation = tf.matmul(logits, w_1) + b_1

			self.pred_probs = tf.contrib.layers.softmax(self.estimation)
			self.logits = tf.cast(tf.argmax(self.pred_probs, -1), tf.int32)

			match_utils.add_reg_without_bias(self.scope)
Ejemplo n.º 2
0
    def create_model_graph(self, num_classes, word_vocab=None, char_vocab=None, is_training=True, global_step=None):
        options = self.options
        # ======word representation layer======
        in_question_repres = [] # word and char
        in_passage_repres = [] # word and char
        input_dim = 0
        if word_vocab is not None:
            word_vec_trainable = True
            cur_device = '/gpu:0'
            if options.fix_word_vec:
                word_vec_trainable = False
                cur_device = '/cpu:0'
            with tf.device(cur_device):
                self.word_embedding = tf.get_variable("word_embedding", trainable=word_vec_trainable, 
                                                  initializer=tf.constant(word_vocab.word_vecs), dtype=tf.float32)

            in_question_word_repres = tf.nn.embedding_lookup(self.word_embedding, self.in_question_words) # [batch_size, question_len, word_dim]
            in_passage_word_repres = tf.nn.embedding_lookup(self.word_embedding, self.in_passage_words) # [batch_size, passage_len, word_dim]
            in_question_repres.append(in_question_word_repres)
            in_passage_repres.append(in_passage_word_repres)

            input_shape = tf.shape(self.in_question_words)
            batch_size = input_shape[0]
            question_len = input_shape[1]
            input_shape = tf.shape(self.in_passage_words)
            passage_len = input_shape[1]
            input_dim += word_vocab.word_dim
            
        if options.with_char and char_vocab is not None:
            input_shape = tf.shape(self.in_question_chars)
            batch_size = input_shape[0]
            question_len = input_shape[1]
            q_char_len = input_shape[2]
            input_shape = tf.shape(self.in_passage_chars)
            passage_len = input_shape[1]
            p_char_len = input_shape[2]
            char_dim = char_vocab.word_dim
            self.char_embedding = tf.get_variable("char_embedding", initializer=tf.constant(char_vocab.word_vecs), dtype=tf.float32)

            in_question_char_repres = tf.nn.embedding_lookup(self.char_embedding, self.in_question_chars) # [batch_size, question_len, q_char_len, char_dim]
            in_question_char_repres = tf.reshape(in_question_char_repres, shape=[-1, q_char_len, char_dim])
            question_char_lengths = tf.reshape(self.question_char_lengths, [-1])
            quesiton_char_mask = tf.sequence_mask(question_char_lengths, q_char_len, dtype=tf.float32)  # [batch_size*question_len, q_char_len]
            in_question_char_repres = tf.multiply(in_question_char_repres, tf.expand_dims(quesiton_char_mask, axis=-1))


            in_passage_char_repres = tf.nn.embedding_lookup(self.char_embedding, self.in_passage_chars) # [batch_size, passage_len, p_char_len, char_dim]
            in_passage_char_repres = tf.reshape(in_passage_char_repres, shape=[-1, p_char_len, char_dim])
            passage_char_lengths = tf.reshape(self.passage_char_lengths, [-1])
            passage_char_mask = tf.sequence_mask(passage_char_lengths, p_char_len, dtype=tf.float32)  # [batch_size*passage_len, p_char_len]
            in_passage_char_repres = tf.multiply(in_passage_char_repres, tf.expand_dims(passage_char_mask, axis=-1))

            (question_char_outputs_fw, question_char_outputs_bw, _) = layer_utils.my_lstm_layer(in_question_char_repres, options.char_lstm_dim,
                    input_lengths=question_char_lengths,scope_name="char_lstm", reuse=False,
                    is_training=is_training, dropout_rate=options.dropout_rate, use_cudnn=options.use_cudnn)
            question_char_outputs_fw = layer_utils.collect_final_step_of_lstm(question_char_outputs_fw, question_char_lengths - 1)
            question_char_outputs_bw = question_char_outputs_bw[:, 0, :]
            question_char_outputs = tf.concat(axis=1, values=[question_char_outputs_fw, question_char_outputs_bw])
            question_char_outputs = tf.reshape(question_char_outputs, [batch_size, question_len, 2*options.char_lstm_dim])

            (passage_char_outputs_fw, passage_char_outputs_bw, _) = layer_utils.my_lstm_layer(in_passage_char_repres, options.char_lstm_dim,
                    input_lengths=passage_char_lengths, scope_name="char_lstm", reuse=True,
                    is_training=is_training, dropout_rate=options.dropout_rate, use_cudnn=options.use_cudnn)
            passage_char_outputs_fw = layer_utils.collect_final_step_of_lstm(passage_char_outputs_fw, passage_char_lengths - 1)
            passage_char_outputs_bw = passage_char_outputs_bw[:, 0, :]
            passage_char_outputs = tf.concat(axis=1, values=[passage_char_outputs_fw, passage_char_outputs_bw])
            passage_char_outputs = tf.reshape(passage_char_outputs, [batch_size, passage_len, 2*options.char_lstm_dim])
                
            in_question_repres.append(question_char_outputs)
            in_passage_repres.append(passage_char_outputs)

            input_dim += 2*options.char_lstm_dim

        in_question_repres = tf.concat(axis=2, values=in_question_repres) # [batch_size, question_len, dim] # concat word and char
        in_passage_repres = tf.concat(axis=2, values=in_passage_repres) # [batch_size, passage_len, dim] # concat word and char

        if is_training:
            in_question_repres = tf.nn.dropout(in_question_repres, (1 - options.dropout_rate))
            in_passage_repres = tf.nn.dropout(in_passage_repres, (1 - options.dropout_rate))

        mask = tf.sequence_mask(self.passage_lengths, passage_len, dtype=tf.float32) # [batch_size, passage_len]
        question_mask = tf.sequence_mask(self.question_lengths, question_len, dtype=tf.float32) # [batch_size, question_len]

        # ======Highway layer======
        if options.with_highway:
            with tf.variable_scope("input_highway"):
                in_question_repres = match_utils.multi_highway_layer(in_question_repres, input_dim, options.highway_layer_num)
                tf.get_variable_scope().reuse_variables()
                in_passage_repres = match_utils.multi_highway_layer(in_passage_repres, input_dim, options.highway_layer_num)

        # in_question_repres = tf.multiply(in_question_repres, tf.expand_dims(question_mask, axis=-1))
        # in_passage_repres = tf.multiply(in_passage_repres, tf.expand_dims(mask, axis=-1))

        # ========Bilateral Matching=====
        (match_representation, match_dim) = match_utils.bilateral_match_func(in_question_repres, in_passage_repres,
                        self.question_lengths, self.passage_lengths, question_mask, mask, input_dim, is_training, options=options)

        #========Prediction Layer=========
        # match_dim = 4 * self.options.aggregation_lstm_dim
        w_0 = tf.get_variable("w_0", [match_dim, match_dim/2], dtype=tf.float32)
        b_0 = tf.get_variable("b_0", [match_dim/2], dtype=tf.float32)
        w_1 = tf.get_variable("w_1", [match_dim/2, num_classes],dtype=tf.float32)
        b_1 = tf.get_variable("b_1", [num_classes],dtype=tf.float32)

        # if is_training: match_representation = tf.nn.dropout(match_representation, (1 - options.dropout_rate))
        logits = tf.matmul(match_representation, w_0) + b_0
        logits = tf.tanh(logits)
        if is_training: logits = tf.nn.dropout(logits, (1 - options.dropout_rate))
        logits = tf.matmul(logits, w_1) + b_1

        self.prob = tf.nn.softmax(logits)
        
        gold_matrix = tf.one_hot(self.truth, num_classes, dtype=tf.float32)
        self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=gold_matrix))

        correct = tf.nn.in_top_k(logits, self.truth, 1)
        self.eval_correct = tf.reduce_sum(tf.cast(correct, tf.int32))
        self.predictions = tf.argmax(self.prob, 1)

        if not is_training: return

        tvars = tf.trainable_variables()
        if self.options.lambda_l2>0.0:
            l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in tvars if v.get_shape().ndims > 1])
            self.loss = self.loss + self.options.lambda_l2 * l2_loss

        if self.options.optimize_type == 'adadelta':
            optimizer = tf.train.AdadeltaOptimizer(learning_rate=self.options.learning_rate)
        elif self.options.optimize_type == 'adam':
            optimizer = tf.train.AdamOptimizer(learning_rate=self.options.learning_rate)

        grads = layer_utils.compute_gradients(self.loss, tvars)
        grads, _ = tf.clip_by_global_norm(grads, self.options.grad_clipper)
        self.train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step)
        # self.train_op = optimizer.apply_gradients(zip(grads, tvars))

        if self.options.with_moving_average:
            # Track the moving averages of all trainable variables.
            MOVING_AVERAGE_DECAY = 0.9999  # The decay to use for the moving average.
            variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
            variables_averages_op = variable_averages.apply(tf.trainable_variables())
            train_ops = [self.train_op, variables_averages_op]
            self.train_op = tf.group(*train_ops)
Ejemplo n.º 3
0
    def __init__(self,
                 num_classes,
                 word_vocab=None,
                 char_vocab=None,
                 POS_vocab=None,
                 NER_vocab=None,
                 dropout_rate=0.5,
                 learning_rate=0.001,
                 optimize_type='adam',
                 lambda_l2=1e-5,
                 with_word=True,
                 with_char=True,
                 with_POS=True,
                 with_NER=True,
                 char_lstm_dim=20,
                 context_lstm_dim=100,
                 aggregation_lstm_dim=200,
                 is_training=True,
                 filter_layer_threshold=0.2,
                 MP_dim=50,
                 context_layer_num=1,
                 aggregation_layer_num=1,
                 fix_word_vec=False,
                 with_filter_layer=True,
                 with_highway=False,
                 with_lex_features=False,
                 lex_dim=100,
                 word_level_MP_dim=-1,
                 sep_endpoint=False,
                 end_model_combine=False,
                 with_match_highway=False,
                 with_aggregation_highway=False,
                 highway_layer_num=1,
                 with_lex_decomposition=False,
                 lex_decompsition_dim=-1,
                 with_left_match=True,
                 with_right_match=True,
                 with_full_match=True,
                 with_maxpool_match=True,
                 with_attentive_match=True,
                 with_max_attentive_match=True,
                 with_dep=True,
                 with_image=False,
                 image_with_hypothesis_only=False,
                 with_img_full_match=True,
                 with_img_maxpool_match=False,
                 with_img_attentive_match=True,
                 with_img_max_attentive_match=True,
                 image_context_layer=True,
                 img_dim=100):

        # ======word representation layer======
        in_question_repres = []  # premise
        in_question_dep_cons = []  # premise dependency connections
        in_passage_repres = []  # hypothesis
        in_passage_dep_cons = []  # hypothesis dependency connections
        self.question_lengths = tf.placeholder(tf.int32, [None])
        self.passage_lengths = tf.placeholder(tf.int32, [None])
        self.truth = tf.placeholder(tf.int32, [None])  # [batch_size]
        input_dim = 0
        # word embedding
        if with_word and word_vocab is not None:
            self.in_question_words = tf.placeholder(
                tf.int32, [None, None])  # [batch_size, question_len]
            self.in_passage_words = tf.placeholder(
                tf.int32, [None, None])  # [batch_size, passage_len]
            #self.emb_init          = tf.placeholder(tf.float32, shape=word_vocab.word_vecs.shape)
            #self.word_embedding = tf.get_variable("word_embedding", shape=[word_vocab.size()+1, word_vocab.word_dim], initializer=tf.constant(word_vocab.word_vecs), dtype=tf.float32)
            word_vec_trainable = True
            cur_device = '/gpu:0'
            if fix_word_vec:
                word_vec_trainable = False
                cur_device = '/cpu:0'
            with tf.device(cur_device):
                self.word_embedding = tf.get_variable(
                    "word_embedding",
                    trainable=word_vec_trainable,
                    initializer=tf.constant(word_vocab.word_vecs),
                    dtype=tf.float32)
                #self.word_embedding = tf.Variable(self.emb_init, name="word_embedding",trainable=word_vec_trainable, dtype=tf.float32)
            in_question_word_repres = tf.nn.embedding_lookup(
                self.word_embedding,
                self.in_question_words)  # [batch_size, question_len, word_dim]
            in_passage_word_repres = tf.nn.embedding_lookup(
                self.word_embedding,
                self.in_passage_words)  # [batch_size, passage_len, word_dim]
            #print (in_question_word_repres)
            in_question_repres.append(in_question_word_repres)
            in_passage_repres.append(in_passage_word_repres)

            input_shape = tf.shape(self.in_question_words)
            batch_size = input_shape[0]
            question_len = input_shape[1]
            input_shape = tf.shape(self.in_passage_words)
            passage_len = input_shape[1]
            input_dim += word_vocab.word_dim

        if with_dep:
            self.in_question_dependency = tf.placeholder(
                tf.float32, [None, None, word_vocab.parser.typesize
                             ])  # [batch_size, question_len, dep_dim]
            self.in_passage_dependency = tf.placeholder(
                tf.float32, [None, None, word_vocab.parser.typesize
                             ])  # [batch_size, passage_len, dep_dim]
            self.in_question_dep_con = tf.placeholder(
                tf.int32, [None, None])  # [batch_size, question_len]
            self.in_passage_dep_con = tf.placeholder(
                tf.int32, [None, None])  # [batch_size, passage_len]
            #dependency representation is the same as data input
            in_question_dep_repres = self.in_question_dependency
            in_passage_dep_repres = self.in_passage_dependency

            #in_question_repres.append(in_question_dep_repres)
            #in_passage_repres.append(in_passage_dep_repres)

            #input_dim += word_vocab.parser.typesize # dependency_dim
            # embedding dependency later here

            with tf.variable_scope('dep_lstm'):
                # lstm cell
                dep_lstm_cell = tf.contrib.rnn.BasicLSTMCell(20)
                # dropout
                if is_training:
                    dep_lstm_cell = tf.contrib.rnn.DropoutWrapper(
                        dep_lstm_cell, output_keep_prob=(1 - dropout_rate))
                dep_lstm_cell = tf.contrib.rnn.MultiRNNCell([dep_lstm_cell])

                # question_representation
                question_dep_outputs = my_rnn.dynamic_rnn(
                    dep_lstm_cell,
                    in_question_dep_repres,
                    sequence_length=self.question_lengths,
                    dtype=tf.float32)[0]  # [batch_size, question_len, 20]
                #question_dep_outputs = question_dep_outputs[:,-1,:]
                #question_char_outputs = tf.reshape(question_char_outputs, [batch_size, question_len, char_lstm_dim])

                tf.get_variable_scope().reuse_variables()
                # passage representation
                passage_dep_outputs = my_rnn.dynamic_rnn(
                    dep_lstm_cell,
                    in_passage_dep_repres,
                    sequence_length=self.passage_lengths,
                    dtype=tf.float32)[0]  # [batch_size, q_char_len, 20]
                #passage_char_outputs = passage_char_outputs[:,-1,:]
                #passage_char_outputs = tf.reshape(passage_char_outputs, [batch_size, passage_len, char_lstm_dim])

            in_question_repres.append(question_dep_outputs)
            in_passage_repres.append(passage_dep_outputs)
            input_dim += 20
            #get dependency connections, do smth here? otherwise just pass self.in_question_dep_con to matching function
            in_question_dep_cons = self.in_question_dep_con
            in_passage_dep_cons = self.in_passage_dep_con

        out_image_feats = None
        if with_image:
            self.image_feats = tf.placeholder(
                tf.float32, [None, 49, 512])  #[batch_size, in_feats_dim]
            image_feats = tf.reshape(self.image_feats, [-1, 512])
            #now resize it to context_lstm_dim
            w_0 = tf.get_variable("image_w_0", [512, context_lstm_dim],
                                  dtype=tf.float32)
            b_0 = tf.get_variable("image_b_0", [context_lstm_dim],
                                  dtype=tf.float32)
            out_image_feats = tf.matmul(image_feats,
                                        w_0) + b_0  # [batch_size, 300]
            if is_training:
                out_image_feats = tf.nn.dropout(out_image_feats,
                                                (1 - dropout_rate))
            else:
                out_image_feats = tf.multiply(out_image_feats,
                                              (1 - dropout_rate))
            out_image_feats = tf.reshape(out_image_feats,
                                         [-1, 49, context_lstm_dim])

        if with_POS and POS_vocab is not None:
            self.in_question_POSs = tf.placeholder(
                tf.int32, [None, None])  # [batch_size, question_len]
            self.in_passage_POSs = tf.placeholder(
                tf.int32, [None, None])  # [batch_size, passage_len]
            #self.POS_embedding = tf.get_variable("POS_embedding", shape=[POS_vocab.size()+1, POS_vocab.word_dim], initializer=tf.constant(POS_vocab.word_vecs), dtype=tf.float32)
            self.POS_embedding = tf.get_variable("POS_embedding",
                                                 initializer=tf.constant(
                                                     POS_vocab.word_vecs),
                                                 dtype=tf.float32)

            in_question_POS_repres = tf.nn.embedding_lookup(
                self.POS_embedding,
                self.in_question_POSs)  # [batch_size, question_len, POS_dim]
            in_passage_POS_repres = tf.nn.embedding_lookup(
                self.POS_embedding,
                self.in_passage_POSs)  # [batch_size, passage_len, POS_dim]
            in_question_repres.append(in_question_POS_repres)
            in_passage_repres.append(in_passage_POS_repres)

            input_shape = tf.shape(self.in_question_POSs)
            batch_size = input_shape[0]
            question_len = input_shape[1]
            input_shape = tf.shape(self.in_passage_POSs)
            passage_len = input_shape[1]
            input_dim += POS_vocab.word_dim

        if with_NER and NER_vocab is not None:
            self.in_question_NERs = tf.placeholder(
                tf.int32, [None, None])  # [batch_size, question_len]
            self.in_passage_NERs = tf.placeholder(
                tf.int32, [None, None])  # [batch_size, passage_len]
            #self.NER_embedding = tf.get_variable("NER_embedding", shape=[NER_vocab.size()+1, NER_vocab.word_dim], initializer=tf.constant(NER_vocab.word_vecs), dtype=tf.float32)
            self.NER_embedding = tf.get_variable("NER_embedding",
                                                 initializer=tf.constant(
                                                     NER_vocab.word_vecs),
                                                 dtype=tf.float32)

            in_question_NER_repres = tf.nn.embedding_lookup(
                self.NER_embedding,
                self.in_question_NERs)  # [batch_size, question_len, NER_dim]
            in_passage_NER_repres = tf.nn.embedding_lookup(
                self.NER_embedding,
                self.in_passage_NERs)  # [batch_size, passage_len, NER_dim]
            in_question_repres.append(in_question_NER_repres)
            in_passage_repres.append(in_passage_NER_repres)

            input_shape = tf.shape(self.in_question_NERs)
            batch_size = input_shape[0]
            question_len = input_shape[1]
            input_shape = tf.shape(self.in_passage_NERs)
            passage_len = input_shape[1]
            input_dim += NER_vocab.word_dim

        if with_char and char_vocab is not None:
            self.question_char_lengths = tf.placeholder(
                tf.int32, [None, None])  # [batch_size, question_len]
            self.passage_char_lengths = tf.placeholder(
                tf.int32, [None, None])  # [batch_size, passage_len]
            self.in_question_chars = tf.placeholder(
                tf.int32,
                [None, None, None])  # [batch_size, question_len, q_char_len]
            self.in_passage_chars = tf.placeholder(
                tf.int32,
                [None, None, None])  # [batch_size, passage_len, p_char_len]
            input_shape = tf.shape(self.in_question_chars)
            batch_size = input_shape[0]
            question_len = input_shape[1]
            q_char_len = input_shape[2]
            input_shape = tf.shape(self.in_passage_chars)
            passage_len = input_shape[1]
            p_char_len = input_shape[2]
            char_dim = char_vocab.word_dim
            #             self.char_embedding = tf.get_variable("char_embedding", shape=[char_vocab.size()+1, char_vocab.word_dim], initializer=tf.constant(char_vocab.word_vecs), dtype=tf.float32)
            self.char_embedding = tf.get_variable("char_embedding",
                                                  initializer=tf.constant(
                                                      char_vocab.word_vecs),
                                                  dtype=tf.float32)

            in_question_char_repres = tf.nn.embedding_lookup(
                self.char_embedding, self.in_question_chars
            )  # [batch_size, question_len, q_char_len, char_dim]
            in_question_char_repres = tf.reshape(
                in_question_char_repres, shape=[-1, q_char_len, char_dim])
            question_char_lengths = tf.reshape(self.question_char_lengths,
                                               [-1])
            in_passage_char_repres = tf.nn.embedding_lookup(
                self.char_embedding, self.in_passage_chars
            )  # [batch_size, passage_len, p_char_len, char_dim]
            in_passage_char_repres = tf.reshape(
                in_passage_char_repres, shape=[-1, p_char_len, char_dim])
            passage_char_lengths = tf.reshape(self.passage_char_lengths, [-1])
            with tf.variable_scope('char_lstm'):
                # lstm cell
                char_lstm_cell = tf.contrib.rnn.BasicLSTMCell(char_lstm_dim)
                # dropout
                if is_training:
                    char_lstm_cell = tf.contrib.rnn.DropoutWrapper(
                        char_lstm_cell, output_keep_prob=(1 - dropout_rate))
                char_lstm_cell = tf.contrib.rnn.MultiRNNCell([char_lstm_cell])

                # question_representation
                question_char_outputs = my_rnn.dynamic_rnn(
                    char_lstm_cell,
                    in_question_char_repres,
                    sequence_length=question_char_lengths,
                    dtype=tf.float32
                )[0]  # [batch_size*question_len, q_char_len, char_lstm_dim]
                question_char_outputs = question_char_outputs[:, -1, :]
                question_char_outputs = tf.reshape(
                    question_char_outputs,
                    [batch_size, question_len, char_lstm_dim])

                tf.get_variable_scope().reuse_variables()
                # passage representation
                passage_char_outputs = my_rnn.dynamic_rnn(
                    char_lstm_cell,
                    in_passage_char_repres,
                    sequence_length=passage_char_lengths,
                    dtype=tf.float32
                )[0]  # [batch_size*question_len, q_char_len, char_lstm_dim]
                passage_char_outputs = passage_char_outputs[:, -1, :]
                passage_char_outputs = tf.reshape(
                    passage_char_outputs,
                    [batch_size, passage_len, char_lstm_dim])

            in_question_repres.append(question_char_outputs)
            in_passage_repres.append(passage_char_outputs)

            input_dim += char_lstm_dim
        #print('\n\n\n')
        #print (in_question_repres)
        #print('\n\n\n')
        in_question_repres = tf.concat(in_question_repres,
                                       2)  # [batch_size, question_len, dim]
        in_passage_repres = tf.concat(in_passage_repres,
                                      2)  # [batch_size, passage_len, dim]

        if is_training:
            in_question_repres = tf.nn.dropout(in_question_repres,
                                               (1 - dropout_rate))
            in_passage_repres = tf.nn.dropout(in_passage_repres,
                                              (1 - dropout_rate))
        else:
            in_question_repres = tf.multiply(in_question_repres,
                                             (1 - dropout_rate))
            in_passage_repres = tf.multiply(in_passage_repres,
                                            (1 - dropout_rate))

        mask = tf.sequence_mask(self.passage_lengths,
                                passage_len,
                                dtype=tf.float32)  # [batch_size, passage_len]
        question_mask = tf.sequence_mask(
            self.question_lengths, question_len,
            dtype=tf.float32)  # [batch_size, question_len]

        # ======Highway layer======
        if with_highway:
            with tf.variable_scope("input_highway"):
                in_question_repres = match_utils.multi_highway_layer(
                    in_question_repres, input_dim, highway_layer_num)
                tf.get_variable_scope().reuse_variables()
                in_passage_repres = match_utils.multi_highway_layer(
                    in_passage_repres, input_dim, highway_layer_num)

        # ========Bilateral Matching=====
        (match_representation, match_dim) = match_utils.bilateral_match_func(
            out_image_feats,
            in_question_repres,
            in_passage_repres,
            in_question_dep_cons,
            in_passage_dep_cons,
            self.question_lengths,
            self.passage_lengths,
            question_mask,
            mask,
            MP_dim,
            input_dim,
            with_filter_layer,
            context_layer_num,
            context_lstm_dim,
            is_training,
            dropout_rate,
            with_match_highway,
            aggregation_layer_num,
            aggregation_lstm_dim,
            highway_layer_num,
            with_aggregation_highway,
            with_lex_decomposition,
            lex_decompsition_dim,
            with_full_match,
            with_maxpool_match,
            with_attentive_match,
            with_max_attentive_match,
            with_left_match,
            with_right_match,
            with_dep=False,
            with_image=with_image,
            with_mean_aggregation=True,
            image_with_hypothesis_only=image_with_hypothesis_only,
            with_img_attentive_match=with_img_attentive_match,
            with_img_full_match=with_img_full_match,
            with_img_maxpool_match=with_img_maxpool_match,
            with_img_max_attentive_match=with_img_max_attentive_match,
            image_context_layer=image_context_layer,
            img_dim=100)

        #========Prediction Layer=========
        w_0 = tf.get_variable("w_0", [match_dim, match_dim / 2],
                              dtype=tf.float32)
        b_0 = tf.get_variable("b_0", [match_dim / 2], dtype=tf.float32)
        w_1 = tf.get_variable("w_1", [match_dim / 2, num_classes],
                              dtype=tf.float32)
        b_1 = tf.get_variable("b_1", [num_classes], dtype=tf.float32)

        logits = tf.matmul(match_representation, w_0) + b_0
        logits = tf.tanh(logits)
        if is_training:
            logits = tf.nn.dropout(logits, (1 - dropout_rate))
        else:
            logits = tf.multiply(logits, (1 - dropout_rate))
        logits = tf.matmul(logits, w_1) + b_1

        self.prob = tf.nn.softmax(logits)

        #         cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, tf.cast(self.truth, tf.int64), name='cross_entropy_per_example')
        #         self.loss = tf.reduce_mean(cross_entropy, name='cross_entropy')

        gold_matrix = tf.one_hot(self.truth, num_classes, dtype=tf.float32)
        #gold_matrix = tf.one_hot(self.truth, num_classes)
        self.loss = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(logits=logits,
                                                    labels=gold_matrix))

        correct = tf.nn.in_top_k(logits, self.truth, 1)
        self.eval_correct = tf.reduce_sum(tf.cast(correct, tf.int32))
        self.predictions = tf.arg_max(self.prob, 1)

        if optimize_type == 'adadelta':
            clipper = 50
            optimizer = tf.train.AdadeltaOptimizer(learning_rate=learning_rate)
            tvars = tf.trainable_variables()
            l2_loss = tf.add_n(
                [tf.nn.l2_loss(v) for v in tvars if v.get_shape().ndims > 1])
            self.loss = self.loss + lambda_l2 * l2_loss
            grads, _ = tf.clip_by_global_norm(tf.gradients(self.loss, tvars),
                                              clipper)
            self.train_op = optimizer.apply_gradients(zip(grads, tvars))
        elif optimize_type == 'sgd':
            self.global_step = tf.Variable(
                0, name='global_step',
                trainable=False)  # Create a variable to track the global step.
            min_lr = 0.000001
            self._lr_rate = tf.maximum(
                min_lr,
                tf.train.exponential_decay(learning_rate, self.global_step,
                                           30000, 0.98))
            self.train_op = tf.train.GradientDescentOptimizer(
                learning_rate=self._lr_rate).minimize(self.loss)
        elif optimize_type == 'ema':
            tvars = tf.trainable_variables()
            train_op = tf.train.AdamOptimizer(
                learning_rate=learning_rate).minimize(self.loss)
            # Create an ExponentialMovingAverage object
            ema = tf.train.ExponentialMovingAverage(decay=0.9999)
            # Create the shadow variables, and add ops to maintain moving averages # of var0 and var1.
            maintain_averages_op = ema.apply(tvars)
            # Create an op that will update the moving averages after each training
            # step.  This is what we will use in place of the usual training op.
            with tf.control_dependencies([train_op]):
                self.train_op = tf.group(maintain_averages_op)
        elif optimize_type == 'adam':
            clipper = 50
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
            tvars = tf.trainable_variables()
            l2_loss = tf.add_n(
                [tf.nn.l2_loss(v) for v in tvars if v.get_shape().ndims > 1])
            self.loss = self.loss + lambda_l2 * l2_loss
            grads, _ = tf.clip_by_global_norm(tf.gradients(self.loss, tvars),
                                              clipper)
            self.train_op = optimizer.apply_gradients(zip(grads, tvars))

        extra_train_ops = []
        train_ops = [self.train_op] + extra_train_ops
        self.train_op = tf.group(*train_ops)
Ejemplo n.º 4
0
    def _build(self, in_passage_words, passage_lengths, in_question_words_soft,
               question_lengths, truth):
        """ truth: a int in [0 .. num_classes] indicating entailment
        """
        num_classes = self.num_classes
        word_vocab = self.word_vocab
        is_training = self.is_training
        global_step = self.global_step
        options = self.options
        # ======word representation layer======
        in_question_repres = []
        in_passage_repres = []
        input_dim = 0
        if word_vocab is not None:
            word_vec_trainable = True
            cur_device = '/gpu:0'
            if options.fix_word_vec:
                word_vec_trainable = False
                cur_device = '/cpu:0'
            with tf.device(cur_device):
                self.word_embedding = tf.get_variable(
                    "word_embedding",
                    trainable=word_vec_trainable,
                    initializer=tf.constant(word_vocab.word_vecs),
                    dtype=tf.float32)

            #in_question_word_repres = tf.nn.embedding_lookup(self.word_embedding, in_question_words_soft) # [batch_size, question_len, word_dim]
            in_question_word_repres = tx.utils.soft_sequence_embedding(
                self.word_embedding, in_question_words_soft)
            in_passage_word_repres = tf.nn.embedding_lookup(
                self.word_embedding,
                in_passage_words)  # [batch_size, passage_len, word_dim]
            in_question_repres.append(in_question_word_repres)
            in_passage_repres.append(in_passage_word_repres)

            input_shape = tf.shape(in_question_words_soft)
            batch_size = input_shape[0]
            question_len = input_shape[1]
            input_shape = tf.shape(in_passage_words)
            passage_len = input_shape[1]
            input_dim += word_vocab.word_dim

        in_question_repres = tf.concat(
            axis=2,
            values=in_question_repres)  # [batch_size, question_len, dim]
        in_passage_repres = tf.concat(
            axis=2, values=in_passage_repres)  # [batch_size, passage_len, dim]

        if is_training:
            in_question_repres = tf.nn.dropout(in_question_repres,
                                               (1 - options.dropout_rate))
            in_passage_repres = tf.nn.dropout(in_passage_repres,
                                              (1 - options.dropout_rate))

        mask = tf.sequence_mask(passage_lengths, passage_len,
                                dtype=tf.float32)  # [batch_size, passage_len]
        question_mask = tf.sequence_mask(
            question_lengths, question_len,
            dtype=tf.float32)  # [batch_size, question_len]

        # ======Highway layer======
        if options.with_highway:
            with tf.variable_scope("input_highway"):
                in_question_repres = match_utils.multi_highway_layer(
                    in_question_repres, input_dim, options.highway_layer_num)
                tf.get_variable_scope().reuse_variables()
                in_passage_repres = match_utils.multi_highway_layer(
                    in_passage_repres, input_dim, options.highway_layer_num)

        # in_question_repres = tf.multiply(in_question_repres, tf.expand_dims(question_mask, axis=-1))
        # in_passage_repres = tf.multiply(in_passage_repres, tf.expand_dims(mask, axis=-1))

        # ========Bilateral Matching=====
        (match_representation,
         match_dim) = match_utils.bilateral_match_func(in_question_repres,
                                                       in_passage_repres,
                                                       question_lengths,
                                                       passage_lengths,
                                                       question_mask,
                                                       mask,
                                                       input_dim,
                                                       is_training,
                                                       options=options)

        #========Prediction Layer=========
        # match_dim = 4 * self.options.aggregation_lstm_dim
        w_0 = tf.get_variable("w_0", [match_dim, match_dim / 2],
                              dtype=tf.float32)
        b_0 = tf.get_variable("b_0", [match_dim / 2], dtype=tf.float32)
        w_1 = tf.get_variable("w_1", [match_dim / 2, num_classes],
                              dtype=tf.float32)
        b_1 = tf.get_variable("b_1", [num_classes], dtype=tf.float32)

        # if is_training: match_representation = tf.nn.dropout(match_representation, (1 - options.dropout_rate))
        logits = tf.matmul(match_representation, w_0) + b_0
        logits = tf.tanh(logits)
        if is_training:
            logits = tf.nn.dropout(logits, (1 - options.dropout_rate))
        logits = tf.matmul(logits, w_1) + b_1

        self.prob = tf.nn.softmax(logits)

        gold_matrix = tf.one_hot(truth, num_classes, dtype=tf.float32)
        self.loss = tf.reduce_mean(
            tf.nn.softmax_cross_entropy_with_logits(logits=logits,
                                                    labels=gold_matrix))

        correct = tf.nn.in_top_k(logits, truth, 1)
        self.eval_correct = tf.reduce_sum(tf.cast(correct, tf.int32))
        self.predictions = tf.argmax(self.prob, 1)

        if is_training:
            tvars = tf.trainable_variables()
            if self.options.lambda_l2 > 0.0:
                l2_loss = tf.add_n([
                    tf.nn.l2_loss(v) for v in tvars if v.get_shape().ndims > 1
                ])
                self.loss = self.loss + self.options.lambda_l2 * l2_loss

            if self.options.optimize_type == 'adadelta':
                optimizer = tf.train.AdadeltaOptimizer(
                    learning_rate=self.options.learning_rate)
            elif self.options.optimize_type == 'adam':
                optimizer = tf.train.AdamOptimizer(
                    learning_rate=self.options.learning_rate)

            grads = layer_utils.compute_gradients(self.loss, tvars)
            grads, _ = tf.clip_by_global_norm(grads, self.options.grad_clipper)
            self.train_op = optimizer.apply_gradients(zip(grads, tvars),
                                                      global_step=global_step)
            # self.train_op = optimizer.apply_gradients(zip(grads, tvars))

            if self.options.with_moving_average:
                # Track the moving averages of all trainable variables.
                MOVING_AVERAGE_DECAY = 0.9999  # The decay to use for the moving average.
                variable_averages = tf.train.ExponentialMovingAverage(
                    MOVING_AVERAGE_DECAY, global_step)
                variables_averages_op = variable_averages.apply(
                    tf.trainable_variables())
                train_ops = [self.train_op, variables_averages_op]
                self.train_op = tf.group(*train_ops)

        return {
            "logits": logits,
            "prob": self.prob,
            "loss": self.loss,
            "correct": correct,
            "eval_correct": self.eval_correct,
            "predictions": self.predictions,
        }