def myfunc(x,y):
    if (x>0.5*y and y<0.3):
        return (sn(x-y))
    elif (x<0.5*y):
        return 0
    elif (x>0.2*y):
        return (2*sn(x+2*y))
    else:
        return (sn(y+x))
Ejemplo n.º 2
0
def myfunc(x, y):
    if (x > 0.5 * y and y < 0.3):
        return (sn(x - y))
    elif (x < 0.5 * y):
        return 0
    elif (x > 0.2 * y):
        return (2 * sn(x + 2 * y))
    else:
        return (
            sn(y + x)
        )  # List of stored elements, generated from a Normal distribution
Ejemplo n.º 3
0
 def targetting(self, event=0):
     if event:
         self.angle = math.atan((event.y - 450) / (event.x - 20))
     if self.f2_on:
         canv.itemconfig(self.id, fill='skyblue')
     else:
         canv.itemconfig(self.id, fill='grey')
     canv.coords(self.id, 20, 450,
                 20 + max(self.f2_power, 20) * math.cos(self.angle),
                 450 + max(self.f2_power, 20) * math.sn(self.angle))
        return 0
    elif (x>0.2*y):
        return (2*sn(x+2*y))
    else:
        return (sn(y+x))
    
lst_x = np.random.randn(N_point)
lst_y = np.random.randn(N_point)
lst_result = []

tic=time.time()
for i in range(len(lst_x)):
    x = lst_x[i]
    y = lst_y[i]
    if (x>0.5*y and y<0.3):
        lst_result.append(sn(x-y))
    elif (x<0.5*y):
        lst_result.append(0)
    elif (x>0.2*y):
        lst_result.append(2*sn(x+2*y))
    else:
        lst_result.append(sn(y+x))
toc=time.time()

print("\nTime taken by the plain vanilla for-loop\n----------------------------------------------\n{} us".format(1000000*(toc-tic)))

# List comprehension
print("\nTime taken by list comprehension and zip\n"+'-'*40)
%timeit lst_result = [myfunc(x,y) for x,y in zip(lst_x,lst_y)]

# Map() function
Ejemplo n.º 5
0
def sin(k, x):
    return float(((-1) ** (k - 1)) * (x ** (2 * k - 1))) / float(factorial(2 * k - 1))


sin_approx = []
Number = []
Exponent = []
sin_error = []
sin_first_neglected_term = []
for x in [pi, 30 * pi]:
    for N in [5, 10, 20]:
        Tsin = Sum(f=sin, M=1, N=N)
        Exponent.append(N)
        Number.append(x)
        sin_approx.append(Tsin(x))
        sin_error.append(sn(x) - Tsin(x))
        sin_first_neglected_term.append(Tsin.first_neglected_term)

print "Results for Taylor Expansion of sin(x):\n%10s %10s %40s %40s %40s" % (
    "x",
    "N",
    "Value",
    "Error",
    "First Neglected Term",
)
for i in range(len(Number)):
    print "%10.5f %10.0f %40.4f %40.5f %40.5f" % (
        Number[i],
        Exponent[i],
        sin_approx[i],
        sin_error[i],