def do_compare(self, l1, l2): if l1.same(l2): return True elif l1 == Symbol('System`True') and l2 == Symbol('System`False'): return False elif l1 == Symbol('System`False') and l2 == Symbol('System`True'): return False elif isinstance(l1, String) and isinstance(l2, String): return False elif l1.has_form('List', None) and l2.has_form('List', None): if len(l1.leaves) != len(l2.leaves): return False for item1, item2 in zip(l1.leaves, l2.leaves): result = self.do_compare(item1, item2) if not result: return result return True l1_sympy = l1.to_sympy() l2_sympy = l2.to_sympy() if l1_sympy is None or l2_sympy is None: return None if l1_sympy.is_number and l2_sympy.is_number: # assert min_prec(l1, l2) is None prec = 64 # TODO: Use $MaxExtraPrecision if l1_sympy.n(dps(prec)) == l2_sympy.n(dps(prec)): return True return False else: return None
def do_compare(self, l1, l2): if l1.same(l2): return True elif l1 == Symbol('System`True') and l2 == Symbol('System`False'): return False elif l1 == Symbol('System`False') and l2 == Symbol('System`True'): return False elif isinstance(l1, String) and isinstance(l2, String): return False l1_sympy = l1.to_sympy() l2_sympy = l2.to_sympy() if l1_sympy is None or l2_sympy is None: return None if l1_sympy.is_number and l2_sympy.is_number: # assert min_prec(l1, l2) is None prec = 64 # TODO: Use $MaxExtraPrecision if l1_sympy.n(dps(prec)) == l2_sympy.n(dps(prec)): return True return False elif l1.has_form('List', None) and l2.has_form('List', None): if len(l1.leaves) != len(l2.leaves): return False for item1, item2 in zip(l1.leaves, l2.leaves): result = self.do_compare(item1, item2) if not result: return result return True else: return None
def apply(self, items, evaluation): 'Times[items___]' #TODO: Clean this up and optimise it items = items.numerify(evaluation).get_sequence() number = (sympy.Integer(1), sympy.Integer(0)) leaves = [] prec = min_prec(*items) is_real = all([not isinstance(i, Complex) for i in items]) for item in items: if isinstance(item, Number): if isinstance(item, Complex): sym_real, sym_imag = item.real.to_sympy(), item.imag.to_sympy() else: sym_real, sym_imag = item.to_sympy(), sympy.Integer(0) if prec is not None: sym_real = sym_real.n(dps(prec)) sym_imag = sym_imag.n(dps(prec)) if sym_real.is_zero and sym_imag.is_zero and prec is None: return Integer('0') number = (number[0]*sym_real - number[1]*sym_imag, number[0]*sym_imag + number[1]*sym_real) elif leaves and item == leaves[-1]: leaves[-1] = Expression('Power', leaves[-1], Integer(2)) elif leaves and item.has_form('Power', 2) and leaves[-1].has_form('Power', 2) and item.leaves[0].same(leaves[-1].leaves[0]): leaves[-1].leaves[1] = Expression('Plus', item.leaves[1], leaves[-1].leaves[1]) elif leaves and item.has_form('Power', 2) and item.leaves[0].same(leaves[-1]): leaves[-1] = Expression('Power', leaves[-1], Expression('Plus', item.leaves[1], Integer(1))) elif leaves and leaves[-1].has_form('Power', 2) and leaves[-1].leaves[0].same(item): leaves[-1] = Expression('Power', item, Expression('Plus', Integer(1), leaves[-1].leaves[1])) else: leaves.append(item) if number == (1, 0): number = None elif number == (-1, 0) and leaves and leaves[0].has_form('Plus', None): leaves[0].leaves = [Expression('Times', Integer(-1), leaf) for leaf in leaves[0].leaves] number = None if number is not None: if number[1].is_zero and is_real: leaves.insert(0, Number.from_mp(number[0], prec)) elif number[1].is_zero and number[1].is_Integer and prec is None: leaves.insert(0, Number.from_mp(number[0], prec)) else: leaves.insert(0, Complex(from_sympy(number[0]), from_sympy(number[1]), prec)) if not leaves: return Integer(1) elif len(leaves) == 1: return leaves[0] else: return Expression('Times', *leaves)
def equal2(self, l1: Any, l2: Any) -> Union[bool, None]: """ Two-argument Equal[] """ if l1.sameQ(l2): return True elif l1 == SymbolTrue and l2 == SymbolFalse: return False elif l1 == SymbolFalse and l2 == SymbolTrue: return False elif isinstance(l1, String) and isinstance(l2, String): return False elif l1.has_form("List", None) and l2.has_form("List", None): if len(l1.leaves) != len(l2.leaves): return False for item1, item2 in zip(l1.leaves, l2.leaves): result = self.equal2(item1, item2) if not result: return result return True # Use Mathics' built-in comparisons for Real and Integer. These use # WL's interpretation of Equal[] which allows for slop in Reals # in the least significant digit of precision, while for Integers, comparison # has to be exact. if (isinstance(l1, Real) and isinstance(l2, Real)) or (isinstance(l1, Integer) and isinstance(l2, Integer)): return l1 == l2 # For everything else, use sympy. l1_sympy = l1.to_sympy(evaluate=True, prec=COMPARE_PREC) l2_sympy = l2.to_sympy(evaluate=True, prec=COMPARE_PREC) if l1_sympy is None or l2_sympy is None: return None if not is_number(l1_sympy): l1_sympy = mp_convert_constant(l1_sympy, prec=COMPARE_PREC) if not is_number(l2_sympy): l2_sympy = mp_convert_constant(l2_sympy, prec=COMPARE_PREC) if l1_sympy.is_number and l2_sympy.is_number: # assert min_prec(l1, l2) is None prec = COMPARE_PREC # TODO: Use $MaxExtraPrecision if l1_sympy.n(dps(prec)) == l2_sympy.n(dps(prec)): return True return False else: return None
def apply_makeboxes(self, expr, n, f, evaluation): '''MakeBoxes[BaseForm[expr_, n_], f:StandardForm|TraditionalForm|OutputForm]''' base = n.get_int_value() if base <= 0: evaluation.message('BaseForm', 'intpm', expr, n) return if not (isinstance(expr, Integer) or isinstance(expr, Real)): return Expression("MakeBoxes", expr, f) p = dps(expr.get_precision()) if isinstance(expr, Real) else 0 try: val = convert_base(expr.get_real_value(), base, p) except ValueError: return evaluation.message('BaseForm', 'basf', n) if f.get_name() == 'System`OutputForm': return from_python("%s_%d" % (val, base)) else: return Expression('SubscriptBox', from_python(val), from_python(base))
def apply_makeboxes(self, expr, n, f, evaluation): '''MakeBoxes[BaseForm[expr_, n_], f:StandardForm|TraditionalForm|OutputForm]''' base = n.get_int_value() if base <= 0: evaluation.message('BaseForm', 'intpm', expr, n) return if not (isinstance(expr, Integer) or isinstance(expr, Real)): return Expression("MakeBoxes", expr, f) p = dps(expr.get_precision()) if isinstance(expr, Real) else 0 try: val = convert_base(expr.get_real_value(), base, p) except ValueError: return evaluation.message('BaseForm', 'basf', n) if f.get_name() == 'System`OutputForm': return from_python("%s_%d" % (val, base)) else: return Expression( 'SubscriptBox', from_python(val), from_python(base))
def apply_complex(self, x, evaluation): 'Precision[x_Complex]' if x.is_inexact(): return Real(dps(x.get_precision())) else: return Symbol('Infinity')
def apply(self, z, evaluation): 'Precision[z_]' if not z.is_inexact(): return Symbol('Infinity') elif z.to_sympy().is_zero: return Real(0) else: return Real(dps(z.get_precision()))
def apply(self, z, evaluation): "Precision[z_]" if not z.is_inexact(): return Symbol("Infinity") elif z.to_sympy().is_zero: return Real(0) else: return Real(dps(z.get_precision()))
def apply(self, z, evaluation): '%(name)s[z__]' args = z.numerify(evaluation).get_sequence() mpmath_function = self.get_mpmath_function(args) result = None # if no arguments are inexact attempt to use sympy if all(not x.is_inexact() for x in args): result = Expression(self.get_name(), *args).to_sympy() result = self.prepare_mathics(result) result = from_sympy(result) # evaluate leaves to convert e.g. Plus[2, I] -> Complex[2, 1] return result.evaluate_leaves(evaluation) elif mpmath_function is None: return if not all(isinstance(arg, Number) for arg in args): return if any(arg.is_machine_precision() for arg in args): # if any argument has machine precision then the entire calculation # is done with machine precision. float_args = [ arg.round().get_float_value(permit_complex=True) for arg in args ] if None in float_args: return result = self.call_mpmath(mpmath_function, float_args) if isinstance(result, (mpmath.mpc, mpmath.mpf)): if mpmath.isinf(result) and isinstance(result, mpmath.mpc): result = Symbol('ComplexInfinity') elif mpmath.isinf(result) and result > 0: result = Expression('DirectedInfinity', Integer(1)) elif mpmath.isinf(result) and result < 0: result = Expression('DirectedInfinity', Integer(-1)) elif mpmath.isnan(result): result = Symbol('Indeterminate') else: result = Number.from_mpmath(result) else: prec = min_prec(*args) d = dps(prec) args = [ Expression('N', arg, Integer(d)).evaluate(evaluation) for arg in args ] with mpmath.workprec(prec): mpmath_args = [x.to_mpmath() for x in args] if None in mpmath_args: return result = self.call_mpmath(mpmath_function, mpmath_args) if isinstance(result, (mpmath.mpc, mpmath.mpf)): result = Number.from_mpmath(result, d) return result
def do_compare(l1, l2): if l1.same(l2): return True elif isinstance(l1, String) and isinstance(l2, String): return False elif l1.to_sympy().is_number and l2.to_sympy().is_number: #assert min_prec(l1, l2) is None prec = 64 #TODO: Use $MaxExtraPrecision if l1.to_sympy().n(dps(prec)) == l2.to_sympy().n(dps(prec)): return True return False elif l1.has_form('List', None) and l2.has_form('List', None): if len(l1.leaves) != len(l2.leaves): return False for item1, item2 in zip(l1.leaves, l2.leaves): result = do_compare(item1, item2) if not result: return result return True else: return None
def apply(self, f, xs, evaluation): 'Integrate[f_, xs__]' f_sympy = f.to_sympy() if f_sympy is None or isinstance(f_sympy, SympyExpression): return xs = xs.get_sequence() vars = [] prec = None for x in xs: if x.has_form('List', 3): x, a, b = x.leaves prec_a = a.get_precision() prec_b = b.get_precision() if prec_a is not None and prec_b is not None: prec_new = min(prec_a, prec_b) if prec is None or prec_new < prec: prec = prec_new a = a.to_sympy() b = b.to_sympy() if a is None or b is None: return else: a = b = None if not x.get_name(): evaluation.message('Integrate', 'ilim') return x = x.to_sympy() if x is None: return if a is None or b is None: vars.append(x) else: vars.append((x, a, b)) try: result = sympy.integrate(f_sympy, *vars) except sympy.PolynomialError: return except ValueError: # e.g. ValueError: can't raise polynomial to a negative power return except NotImplementedError: # e.g. NotImplementedError: Result depends on the sign of # -sign(_Mathics_User_j)*sign(_Mathics_User_w) return if prec is not None and isinstance(result, sympy.Integral): # TODO MaxExtaPrecision -> maxn result = result.evalf(dps(prec)) result = from_sympy(result) return result
def apply(self, z, evaluation): '%(name)s[z__]' args = z.numerify(evaluation).get_sequence() mpmath_function = self.get_mpmath_function(args) result = None # if no arguments are inexact attempt to use sympy if all(not x.is_inexact() for x in args): result = Expression(self.get_name(), *args).to_sympy() result = self.prepare_mathics(result) result = from_sympy(result) # evaluate leaves to convert e.g. Plus[2, I] -> Complex[2, 1] return result.evaluate_leaves(evaluation) elif mpmath_function is None: return if not all(isinstance(arg, Number) for arg in args): return if any(arg.is_machine_precision() for arg in args): # if any argument has machine precision then the entire calculation # is done with machine precision. float_args = [arg.round().get_float_value(permit_complex=True) for arg in args] if None in float_args: return result = self.call_mpmath(mpmath_function, float_args) if isinstance(result, (mpmath.mpc, mpmath.mpf)): if mpmath.isinf(result) and isinstance(result, mpmath.mpc): result = Symbol('ComplexInfinity') elif mpmath.isinf(result) and result > 0: result = Expression('DirectedInfinity', Integer(1)) elif mpmath.isinf(result) and result < 0: result = Expression('DirectedInfinity', Integer(-1)) elif mpmath.isnan(result): result = Symbol('Indeterminate') else: result = Number.from_mpmath(result) else: prec = min_prec(*args) d = dps(prec) args = [Expression('N', arg, Integer(d)).evaluate(evaluation) for arg in args] with mpmath.workprec(prec): mpmath_args = [x.to_mpmath() for x in args] if None in mpmath_args: return result = self.call_mpmath(mpmath_function, mpmath_args) if isinstance(result, (mpmath.mpc, mpmath.mpf)): result = Number.from_mpmath(result, d) return result
def do_compare(self, l1, l2): if l1.same(l2): return True elif l1 == SymbolTrue and l2 == SymbolFalse: return False elif l1 == SymbolFalse and l2 == SymbolTrue: return False elif isinstance(l1, String) and isinstance(l2, String): return False elif l1.has_form("List", None) and l2.has_form("List", None): if len(l1.leaves) != len(l2.leaves): return False for item1, item2 in zip(l1.leaves, l2.leaves): result = self.do_compare(item1, item2) if not result: return result return True l1_sympy = l1.to_sympy(evaluate=True, prec=COMPARE_PREC) l2_sympy = l2.to_sympy(evaluate=True, prec=COMPARE_PREC) if l1_sympy is None or l2_sympy is None: return None if not hasattr(l1_sympy, "is_number"): l1_sympy = mp_convert_constant(l1_sympy, prec=COMPARE_PREC) if not hasattr(l2_sympy, "is_number"): l2_sympy = mp_convert_constant(l2_sympy, prec=COMPARE_PREC) if l1_sympy.is_number and l2_sympy.is_number: # assert min_prec(l1, l2) is None prec = COMPARE_PREC # TODO: Use $MaxExtraPrecision if l1_sympy.n(dps(prec)) == l2_sympy.n(dps(prec)): return True return False else: return None
def sympy_equal(self, lhs, rhs, max_extra_prec=None) -> Optional[bool]: try: lhs_sympy = lhs.to_sympy(evaluate=True, prec=COMPARE_PREC) rhs_sympy = rhs.to_sympy(evaluate=True, prec=COMPARE_PREC) except NotImplementedError: return None if lhs_sympy is None or rhs_sympy is None: return None if not is_number(lhs_sympy): lhs_sympy = mp_convert_constant(lhs_sympy, prec=COMPARE_PREC) if not is_number(rhs_sympy): rhs_sympy = mp_convert_constant(rhs_sympy, prec=COMPARE_PREC) # WL's interpretation of Equal[] which allows for slop in Reals # in the least significant digit of precision, while for Integers, comparison # has to be exact. if lhs_sympy.is_number and rhs_sympy.is_number: # assert min_prec(lhs, rhs) is None if max_extra_prec: prec = max_extra_prec else: prec = COMPARE_PREC lhs = lhs_sympy.n(dps(prec)) rhs = rhs_sympy.n(dps(prec)) if lhs == rhs: return True tol = 10 ** (-prec) diff = abs(lhs - rhs) if isinstance(diff, sympy.core.add.Add): return sympy.re(diff) < tol else: return diff < tol else: return None
def apply_makeboxes(self, expr, n, f, evaluation): """MakeBoxes[BaseForm[expr_, n_], f:StandardForm|TraditionalForm|OutputForm]""" base = n.get_int_value() if base <= 0: evaluation.message("BaseForm", "intpm", expr, n) return if not (isinstance(expr, Integer) or isinstance(expr, Real)): return Expression("MakeBoxes", expr, f) p = dps(expr.get_precision()) if isinstance(expr, Real) else 0 val = convert_base(expr.get_real_value(), base, p) if f.get_name() == "OutputForm": return from_python("%s_%d" % (val, base)) else: return Expression("SubscriptBox", from_python(val), from_python(base))
def apply(self, items, evaluation): 'Plus[items___]' items = items.numerify(evaluation).get_sequence() leaves = [] last_item = last_count = None prec = min_prec(*items) is_machine_precision = any(item.is_machine_precision() for item in items) numbers = [] def append_last(): if last_item is not None: if last_count == 1: leaves.append(last_item) else: if last_item.has_form('Times', None): last_item.leaves.insert(0, from_sympy(last_count)) leaves.append(last_item) else: leaves.append(Expression( 'Times', from_sympy(last_count), last_item)) for item in items: if isinstance(item, Number): numbers.append(item) else: count = rest = None if item.has_form('Times', None): for leaf in item.leaves: if isinstance(leaf, Number): count = leaf.to_sympy() rest = item.leaves[:] rest.remove(leaf) if len(rest) == 1: rest = rest[0] else: rest.sort() rest = Expression('Times', *rest) break if count is None: count = sympy.Integer(1) rest = item if last_item is not None and last_item == rest: last_count = last_count + count else: append_last() last_item = rest last_count = count append_last() if numbers: if prec is not None: if is_machine_precision: numbers = [item.to_mpmath() for item in numbers] number = mpmath.fsum(numbers) number = Number.from_mpmath(number) else: with mpmath.workprec(prec): numbers = [item.to_mpmath() for item in numbers] number = mpmath.fsum(numbers) number = Number.from_mpmath(number, dps(prec)) else: number = from_sympy(sum(item.to_sympy() for item in numbers)) else: number = Integer(0) if not number.same(Integer(0)): leaves.insert(0, number) if not leaves: return Integer(0) elif len(leaves) == 1: return leaves[0] else: leaves.sort() return Expression('Plus', *leaves)
def apply(self, f, xs, evaluation, options): "Integrate[f_, xs__, OptionsPattern[]]" self.patpow0 = Pattern.create( Expression("Power", Integer0, Expression("Blank"))) assuming = options["System`Assumptions"].evaluate(evaluation) f_sympy = f.to_sympy() if f_sympy is None or isinstance(f_sympy, SympyExpression): return xs = xs.get_sequence() vars = [] prec = None for x in xs: if x.has_form("List", 3): x, a, b = x.leaves prec_a = a.get_precision() prec_b = b.get_precision() if prec_a is not None and prec_b is not None: prec_new = min(prec_a, prec_b) if prec is None or prec_new < prec: prec = prec_new a = a.to_sympy() b = b.to_sympy() if a is None or b is None: return else: a = b = None if not x.get_name(): evaluation.message("Integrate", "ilim") return x = x.to_sympy() if x is None: return if a is None or b is None: vars.append(x) else: vars.append((x, a, b)) try: result = sympy.integrate(f_sympy, *vars) except sympy.PolynomialError: return except ValueError: # e.g. ValueError: can't raise polynomial to a negative power return except NotImplementedError: # e.g. NotImplementedError: Result depends on the sign of # -sign(_Mathics_User_j)*sign(_Mathics_User_w) return if prec is not None and isinstance(result, sympy.Integral): # TODO MaxExtaPrecision -> maxn result = result.evalf(dps(prec)) else: result = from_sympy(result) # If the result is defined as a Piecewise expression, # use ConditionalExpression. # This does not work now because the form sympy returns the values if result.get_head_name() == "System`Piecewise": cases = result._leaves[0]._leaves if len(result._leaves) == 1: if cases[-1]._leaves[1].is_true(): default = cases[-1]._leaves[0] cases = result._leaves[0]._leaves[:-1] else: default = SymbolUndefined else: cases = result._leaves[0]._leaves default = result._leaves[1] if default.has_form("Integrate", None): if default._leaves[0] == f: default = SymbolUndefined simplified_cases = [] for case in cases: # TODO: if something like 0^n or 1/expr appears, # put the condition n!=0 or expr!=0 accordingly in the list of # conditions... cond = Expression("Simplify", case._leaves[1], assuming).evaluate(evaluation) resif = Expression("Simplify", case._leaves[0], assuming).evaluate(evaluation) if cond.is_true(): return resif if resif.has_form("ConditionalExpression", 2): cond = Expression("And", resif._leaves[1], cond) cond = Expression("Simplify", cond, assuming).evaluate(evaluation) resif = resif._leaves[0] simplified_cases.append(Expression(SymbolList, resif, cond)) cases = simplified_cases if default == SymbolUndefined and len(cases) == 1: cases = cases[0] result = Expression("ConditionalExpression", *(cases._leaves)) else: result = Expression(result._head, cases, default) else: result = Expression("Simplify", result, assuming).evaluate(evaluation) return result
def apply_N(self, precision, evaluation): 'N[E, precision_]' precision = get_precision(precision, evaluation) if precision is not None: return Real(sympy.E.n(dps(precision)), p=precision)
def convert_Number(self, node): s = node.value if s[0] == '-': sign_prefix, s = s[0], s[1:] sign = -1 else: sign_prefix = '' sign = 1 # fast exit if s.isdigit(): return ma.Integer(sign * int(s)) # Look for base s = s.split('^^') if len(s) == 1: base, s = 10, s[0] else: assert len(s) == 2 base, s = int(s[0]), s[1] assert 2 <= base <= 36 # Look for mantissa s = s.split('*^') if len(s) == 1: n, s = 0, s[0] else: # TODO: modify regex and provide error message if n not an int n, s = int(s[1]), s[0] # Look at precision ` suffix to get precision/accuracy prec, acc = None, None s = s.split('`', 1) if len(s) == 1: suffix, s = None, s[0] else: suffix, s = s[1], s[0] if suffix == '': prec = machine_precision elif suffix.startswith('`'): acc = float(suffix[1:]) else: if re.match('0+$', s) is not None: return ma.Integer(0) prec = float(suffix) # Look for decimal point if s.count('.') == 0: if suffix is None: if n < 0: return ma.Rational(sign * int(s, base), base**abs(n)) else: return ma.Integer(sign * int(s, base) * (base**n)) else: s = s + '.' if base == 10: if n != 0: s = s + 'E' + str(n) # sympy handles this if acc is not None: if float(s) == 0: prec = 0. else: prec = acc + log10(float(s)) + n # XXX if prec is not None: prec = dps(prec) # return ma.Real(s, prec, acc) return ma.Real(sign_prefix + s, prec) else: # Convert the base assert isinstance(base, int) and 2 <= base <= 36 # Put into standard form mantissa * base ^ n s = s.split('.') if len(s) == 1: man = s[0] else: n -= len(s[1]) man = s[0] + s[1] man = sign * int(man, base) if n >= 0: result = ma.Integer(man * base**n) else: result = ma.Rational(man, base**-n) if acc is None and prec is None: acc = len(s[1]) acc10 = acc * log10(base) prec10 = acc10 + log10(result.to_python()) if prec10 < 18: prec10 = None elif acc is not None: acc10 = acc * log10(base) prec10 = acc10 + log10(result.to_python()) elif prec is not None: if prec == machine_precision: prec10 = machine_precision else: prec10 = prec * log10(base) # XXX if prec10 is None: prec10 = machine_precision else: prec10 = dps(prec10) return result.round(prec10)
def apply_real(self, x, evaluation): 'Precision[x_Real]' return Real(dps(x.get_precision()))
def apply(self, items, evaluation): 'Times[items___]' items = items.numerify(evaluation).get_sequence() leaves = [] numbers = [] prec = min_prec(*items) is_machine_precision = any(item.is_machine_precision() for item in items) # find numbers and simplify Times -> Power for item in items: if isinstance(item, Number): numbers.append(item) elif leaves and item == leaves[-1]: leaves[-1] = Expression('Power', leaves[-1], Integer(2)) elif (leaves and item.has_form('Power', 2) and leaves[-1].has_form('Power', 2) and item.leaves[0].same(leaves[-1].leaves[0])): leaves[-1].leaves[1] = Expression( 'Plus', item.leaves[1], leaves[-1].leaves[1]) elif (leaves and item.has_form('Power', 2) and item.leaves[0].same(leaves[-1])): leaves[-1] = Expression( 'Power', leaves[-1], Expression('Plus', item.leaves[1], Integer(1))) elif (leaves and leaves[-1].has_form('Power', 2) and leaves[-1].leaves[0].same(item)): leaves[-1] = Expression('Power', item, Expression( 'Plus', Integer(1), leaves[-1].leaves[1])) else: leaves.append(item) if numbers: if prec is not None: if is_machine_precision: numbers = [item.to_mpmath() for item in numbers] number = mpmath.fprod(numbers) number = Number.from_mpmath(number) else: with mpmath.workprec(prec): numbers = [item.to_mpmath() for item in numbers] number = mpmath.fprod(numbers) number = Number.from_mpmath(number, dps(prec)) else: number = sympy.Mul(*[item.to_sympy() for item in numbers]) number = from_sympy(number) else: number = Integer(1) if number.same(Integer(1)): number = None elif number.is_zero: return number elif number.same(Integer(-1)) and leaves and leaves[0].has_form('Plus', None): leaves[0].leaves = [Expression('Times', Integer(-1), leaf) for leaf in leaves[0].leaves] number = None for leaf in leaves: leaf.last_evaluated = None if number is not None: leaves.insert(0, number) if not leaves: return Integer(1) elif len(leaves) == 1: return leaves[0] else: return Expression('Times', *leaves)
Support for numeric evaluation with arbitrary precision is just a proof-of-concept. Precision is not "guarded" through the evaluation process. Only integer precision is supported. However, things like 'N[Pi, 100]' should work as expected. """ from gmpy import mpz, mpf import mpmath from mpmath import mpi from mathics.builtin.base import Builtin, Predefined from mathics.core.numbers import dps, mpmath2gmpy from mathics.core import numbers from mathics.core.expression import Integer, Rational, Real, Complex, Atom, Expression, Number, Symbol machine_precision = dps(mpf(64)) def get_precision(prec, evaluation): if prec.get_name() == "MachinePrecision": return numbers.prec(machine_precision) elif isinstance(prec, (Integer, Rational, Real)): return numbers.prec(prec.value) else: evaluation.message("N", "precbd", prec) return None class N(Builtin): """ <dl>
def apply(self, items, evaluation): 'Times[items___]' # TODO: Clean this up and optimise it items = items.numerify(evaluation).get_sequence() number = (sympy.Integer(1), sympy.Integer(0)) leaves = [] prec = min_prec(*items) is_real = all([not isinstance(i, Complex) for i in items]) for item in items: if isinstance(item, Number): if isinstance(item, Complex): sym_real, sym_imag = item.real.to_sympy( ), item.imag.to_sympy() else: sym_real, sym_imag = item.to_sympy(), sympy.Integer(0) if prec is not None: sym_real = sym_real.n(dps(prec)) sym_imag = sym_imag.n(dps(prec)) if sym_real.is_zero and sym_imag.is_zero and prec is None: return Integer('0') number = (number[0] * sym_real - number[1] * sym_imag, number[0] * sym_imag + number[1] * sym_real) elif leaves and item == leaves[-1]: leaves[-1] = Expression('Power', leaves[-1], Integer(2)) elif (leaves and item.has_form('Power', 2) and leaves[-1].has_form('Power', 2) and item.leaves[0].same(leaves[-1].leaves[0])): leaves[-1].leaves[1] = Expression('Plus', item.leaves[1], leaves[-1].leaves[1]) elif (leaves and item.has_form('Power', 2) and item.leaves[0].same(leaves[-1])): leaves[-1] = Expression( 'Power', leaves[-1], Expression('Plus', item.leaves[1], Integer(1))) elif (leaves and leaves[-1].has_form('Power', 2) and leaves[-1].leaves[0].same(item)): leaves[-1] = Expression( 'Power', item, Expression('Plus', Integer(1), leaves[-1].leaves[1])) else: leaves.append(item) if number == (1, 0): number = None elif number == (-1, 0) and leaves and leaves[0].has_form('Plus', None): leaves[0].leaves = [ Expression('Times', Integer(-1), leaf) for leaf in leaves[0].leaves ] number = None if number is not None: if number[1].is_zero and is_real: leaves.insert(0, Number.from_mp(number[0], prec)) elif number[1].is_zero and number[1].is_Integer and prec is None: leaves.insert(0, Number.from_mp(number[0], prec)) else: leaves.insert( 0, Complex(from_sympy(number[0]), from_sympy(number[1]), prec)) if not leaves: return Integer(1) elif len(leaves) == 1: return leaves[0] else: return Expression('Times', *leaves)
def t_number(self, t): r''' ( (?# Two possible forms depending on whether base is specified) (\d+\^\^([a-zA-Z0-9]+\.?[a-zA-Z0-9]*|[a-zA-Z0-9]*\.?[a-zA-Z0-9]+)) | (\d+\.?\d*|\d*\.?\d+) ) (``?(\+|-)?(\d+\.?\d*|\d*\.?\d+)|`)? (?# Precision / Accuracy) (\*\^(\+|-)?\d+)? (?# Exponent) ''' s = t.value # Look for base s = s.split('^^') if len(s) == 1: base, s = 10, s[0] else: assert len(s) == 2 base, s = int(s[0]), s[1] assert 2 <= base <= 36 # Look for mantissa s = s.split('*^') if len(s) == 1: n, s = 0, s[0] else: # TODO: modify regex and provide error message if n not an int n, s = int(s[1]), s[0] # Look at precision ` suffix to get precision/accuracy prec, acc = None, None s = s.split('`', 1) if len(s) == 1: suffix, s = None, s[0] else: suffix, s = s[1], s[0] if suffix == '': prec = machine_precision elif suffix.startswith('`'): acc = float(suffix[1:]) else: if re.match('0+$', s) is not None: t.value = Integer(0) return t prec = float(suffix) # Look for decimal point if s.count('.') == 0: if suffix is None: if n < 0: t.value = Rational(int(s, base), base ** abs(n)) else: t.value = Integer(int(s, base) * (base ** n)) return t else: s = s + '.' if base == 10: if n != 0: s = s + 'E' + str(n) # sympy handles this if acc is not None: if float(s) == 0: prec = 0. else: prec = acc + log10(float(s)) + n # XXX if prec is not None: prec = dps(prec) t.value = Real(s, prec) # t.value = Real(s, prec, acc) else: # Convert the base assert isinstance(base, int) and 2 <= base <= 36 # Put into standard form mantissa * base ^ n s = s.split('.') if len(s) == 1: man = s[0] else: n -= len(s[1]) man = s[0] + s[1] man = int(man, base) if n >= 0: result = Integer(man * base ** n) else: result = Rational(man, base ** -n) if acc is None and prec is None: acc = len(s[1]) acc10 = acc * log10(base) prec10 = acc10 + log10(result.to_python()) if prec10 < 18: prec10 = None elif acc is not None: acc10 = acc * log10(base) prec10 = acc10 + log10(result.to_python()) elif prec is not None: if prec == machine_precision: prec10 = machine_precision else: prec10 = prec * log10(base) # XXX if prec10 is None: prec10 = machine_precision else: prec10 = dps(prec10) t.value = result.round(prec10) return t
Support for numeric evaluation with arbitrary precision is just a proof-of-concept. Precision is not "guarded" through the evaluation process. Only integer precision is supported. However, things like 'N[Pi, 100]' should work as expected. """ from gmpy import mpz, mpf import mpmath from mpmath import mpi from mathics.builtin.base import Builtin, Predefined from mathics.core.numbers import dps, mpmath2gmpy from mathics.core import numbers from mathics.core.expression import Integer, Rational, Real, Complex, Atom, Expression, Number, Symbol machine_precision = dps(mpf(53)) def get_precision(prec, evaluation): if prec.get_name() == 'MachinePrecision': return numbers.prec(machine_precision) elif isinstance(prec, (Integer, Rational, Real)): return numbers.prec(prec.value) else: evaluation.message('N', 'precbd', prec) return None class N(Builtin): """ <dl>
def apply_N(self, prec, evaluation): 'N[MachinePrecision, prec_]' prec = get_precision(prec, evaluation) if prec is not None: return Real(dps(machine_precision), prec)
Support for numeric evaluation with arbitrary precision is just a proof-of-concept. Precision is not "guarded" through the evaluation process. Only integer precision is supported. However, things like 'N[Pi, 100]' should work as expected. """ from gmpy import mpz, mpf import mpmath from mpmath import mpi from mathics.builtin.base import Builtin, Predefined from mathics.core.numbers import dps, mpmath2gmpy from mathics.core import numbers from mathics.core.expression import Integer, Rational, Real, Complex, Atom, Expression, Number, Symbol machine_precision = dps(mpf(53)) def get_precision(prec, evaluation): if prec.get_name() == 'MachinePrecision': return numbers.prec(machine_precision) elif isinstance(prec, (Integer, Rational, Real)): return numbers.prec(prec.value) else: evaluation.message('N', 'precbd', prec) return None class N(Builtin): """ <dl> <dt>'N[$expr$, $prec$]' <dd>evaluates $expr$ numerically with a precision of $prec$ digits.
def apply(self, items, evaluation): "Times[items___]" items = items.numerify(evaluation).get_sequence() leaves = [] numbers = [] infinity_factor = False prec = min_prec(*items) is_machine_precision = any(item.is_machine_precision() for item in items) # find numbers and simplify Times -> Power for item in items: if isinstance(item, Number): numbers.append(item) elif leaves and item == leaves[-1]: leaves[-1] = Expression("Power", leaves[-1], Integer(2)) elif (leaves and item.has_form("Power", 2) and leaves[-1].has_form("Power", 2) and item.leaves[0].sameQ(leaves[-1].leaves[0])): leaves[-1] = Expression( "Power", leaves[-1].leaves[0], Expression("Plus", item.leaves[1], leaves[-1].leaves[1]), ) elif (leaves and item.has_form("Power", 2) and item.leaves[0].sameQ(leaves[-1])): leaves[-1] = Expression( "Power", leaves[-1], Expression("Plus", item.leaves[1], Integer1)) elif (leaves and leaves[-1].has_form("Power", 2) and leaves[-1].leaves[0].sameQ(item)): leaves[-1] = Expression( "Power", item, Expression("Plus", Integer1, leaves[-1].leaves[1])) elif item.get_head().sameQ(SymbolDirectedInfinity): infinity_factor = True if len(item.leaves) > 1: direction = item.leaves[0] if isinstance(direction, Number): numbers.append(direction) else: leaves.append(direction) elif item.sameQ(SymbolInfinity) or item.sameQ( SymbolComplexInfinity): infinity_factor = True else: leaves.append(item) if numbers: if prec is not None: if is_machine_precision: numbers = [item.to_mpmath() for item in numbers] number = mpmath.fprod(numbers) number = from_mpmath(number) else: with mpmath.workprec(prec): numbers = [item.to_mpmath() for item in numbers] number = mpmath.fprod(numbers) number = from_mpmath(number, dps(prec)) else: number = sympy.Mul(*[item.to_sympy() for item in numbers]) number = from_sympy(number) else: number = Integer1 if number.sameQ(Integer1): number = None elif number.is_zero: if infinity_factor: return Symbol("Indeterminate") return number elif number.sameQ(Integer(-1)) and leaves and leaves[0].has_form( "Plus", None): leaves[0] = Expression( leaves[0].get_head(), *[ Expression("Times", Integer(-1), leaf) for leaf in leaves[0].leaves ], ) number = None for leaf in leaves: leaf.clear_cache() if number is not None: leaves.insert(0, number) if not leaves: if infinity_factor: return SymbolComplexInfinity return Integer1 if len(leaves) == 1: ret = leaves[0] else: ret = Expression("Times", *leaves) if infinity_factor: return Expression(SymbolDirectedInfinity, ret) else: return ret
def apply(self, items, evaluation): "Plus[items___]" items = items.numerify(evaluation).get_sequence() leaves = [] last_item = last_count = None prec = min_prec(*items) is_real = all([not isinstance(i, Complex) for i in items]) if prec is None: number = (sympy.Integer(0), sympy.Integer(0)) else: number = (sympy.Float("0.0", dps(prec)), sympy.Float("0.0", dps(prec))) def append_last(): if last_item is not None: if last_count == 1: leaves.append(last_item) else: if last_item.has_form("Times", None): last_item.leaves.insert(0, Number.from_mp(last_count)) leaves.append(last_item) else: leaves.append(Expression("Times", Number.from_mp(last_count), last_item)) for item in items: if isinstance(item, Number): # TODO: Optimise this for the case of adding many real numbers if isinstance(item, Complex): sym_real, sym_imag = item.real.to_sympy(), item.imag.to_sympy() else: sym_real, sym_imag = item.to_sympy(), sympy.Integer(0) if prec is not None: sym_real = sym_real.n(dps(prec)) sym_imag = sym_imag.n(dps(prec)) number = (number[0] + sym_real, number[1] + sym_imag) else: count = rest = None if item.has_form("Times", None): for leaf in item.leaves: if isinstance(leaf, Number): count = leaf.to_sympy() rest = item.leaves[:] rest.remove(leaf) if len(rest) == 1: rest = rest[0] else: rest.sort() rest = Expression("Times", *rest) break if count is None: count = sympy.Integer(1) rest = item if last_item is not None and last_item == rest: last_count = add(last_count, count) else: append_last() last_item = rest last_count = count append_last() if prec is not None or number != (0, 0): if number[1].is_zero and is_real: leaves.insert(0, Number.from_mp(number[0], prec)) elif number[1].is_zero and number[1].is_Integer and prec is None: leaves.insert(0, Number.from_mp(number[0], prec)) else: leaves.insert(0, Complex(number[0], number[1], prec)) if not leaves: return Integer(0) elif len(leaves) == 1: return leaves[0] else: leaves.sort() return Expression("Plus", *leaves)
def apply(self, items, evaluation): 'Plus[items___]' items = items.numerify(evaluation).get_sequence() leaves = [] last_item = last_count = None prec = min_prec(*items) is_real = all([not isinstance(i, Complex) for i in items]) if prec is None: number = (sympy.Integer(0), sympy.Integer(0)) else: number = (sympy.Float('0.0', dps(prec)), sympy.Float('0.0', dps(prec))) def append_last(): if last_item is not None: if last_count == 1: leaves.append(last_item) else: if last_item.has_form('Times', None): last_item.leaves.insert(0, Number.from_mp(last_count)) leaves.append(last_item) else: leaves.append( Expression('Times', Number.from_mp(last_count), last_item)) for item in items: if isinstance(item, Number): # TODO: Optimise this for the case of adding many real numbers if isinstance(item, Complex): sym_real, sym_imag = item.real.to_sympy( ), item.imag.to_sympy() else: sym_real, sym_imag = item.to_sympy(), sympy.Integer(0) if prec is not None: sym_real = sym_real.n(dps(prec)) sym_imag = sym_imag.n(dps(prec)) number = (number[0] + sym_real, number[1] + sym_imag) else: count = rest = None if item.has_form('Times', None): for leaf in item.leaves: if isinstance(leaf, Number): count = leaf.to_sympy() rest = item.leaves[:] rest.remove(leaf) if len(rest) == 1: rest = rest[0] else: rest.sort() rest = Expression('Times', *rest) break if count is None: count = sympy.Integer(1) rest = item if last_item is not None and last_item == rest: last_count = add(last_count, count) else: append_last() last_item = rest last_count = count append_last() if prec is not None or number != (0, 0): if number[1].is_zero and is_real: leaves.insert(0, Number.from_mp(number[0], prec)) elif number[1].is_zero and number[1].is_Integer and prec is None: leaves.insert(0, Number.from_mp(number[0], prec)) else: leaves.insert(0, Complex(number[0], number[1], prec)) if not leaves: return Integer(0) elif len(leaves) == 1: return leaves[0] else: leaves.sort() return Expression('Plus', *leaves)
def t_number(self, t): r''' ( (?# Two possible forms depending on whether base is specified) (\d+\^\^([a-zA-Z0-9]+\.?[a-zA-Z0-9]*|[a-zA-Z0-9]*\.?[a-zA-Z0-9]+)) | (\d+\.?\d*|\d*\.?\d+) ) (``?(\+|-)?(\d+\.?\d*|\d*\.?\d+)|`)? (?# Precision / Accuracy) (\*\^(\+|-)?\d+)? (?# Exponent) ''' s = t.value # Look for base s = s.split('^^') if len(s) == 1: base, s = 10, s[0] else: assert len(s) == 2 base, s = int(s[0]), s[1] assert 2 <= base <= 36 # Look for mantissa s = s.split('*^') if len(s) == 1: n, s = 0, s[0] else: #TODO: modify regex and provide error message if n not an int n, s = int(s[1]), s[0] # Look at precision ` suffix to get precision/accuracy prec, acc = None, None s = s.split('`', 1) if len(s) == 1: suffix, s = None, s[0] else: suffix, s = s[1], s[0] if suffix == '': prec = machine_precision elif suffix.startswith('`'): acc = float(suffix[1:]) else: if re.match('0+$', s) is not None: t.value = Integer(0) return t prec = float(suffix) # Look for decimal point if s.count('.') == 0: if suffix is None: if n < 0: t.value = Rational(int(s, base), base**abs(n)) else: t.value = Integer(int(s, base) * (base**n)) return t else: s = s + '.' if base == 10: if n != 0: s = s + 'E' + str(n) # sympy handles this if acc is not None: if float(s) == 0: prec = 0. else: prec = acc + log10(float(s)) + n #XXX if prec is not None: prec = dps(prec) t.value = Real(s, prec) #t.value = Real(s, prec, acc) else: # Convert the base assert isinstance(base, int) and 2 <= base <= 36 # Put into standard form mantissa * base ^ n s = s.split('.') if len(s) == 1: man = s[0] else: n -= len(s[1]) man = s[0] + s[1] man = int(man, base) if n >= 0: result = Integer(man * base**n) else: result = Rational(man, base**-n) if acc is None and prec is None: acc = len(s[1]) acc10 = acc * log10(base) prec10 = acc10 + log10(result.to_python()) if prec10 < 18: prec10 = None elif acc is not None: acc10 = acc * log10(base) prec10 = acc10 + log10(result.to_python()) elif prec is not None: if prec == machine_precision: prec10 = machine_precision else: prec10 = prec * log10(base) #XXX if prec10 is None: prec10 = machine_precision else: prec10 = dps(prec10) t.value = result.round(prec10) return t
def apply_N(self, precision, evaluation): "N[Pi, precision_]" precision = get_precision(precision, evaluation) if precision is not None: return Real(sympy.pi.n(dps(precision)), p=precision)