def populate_backward(self): """Populate backward likelihoods for all states/times""" # initialise with exit probabilities self.backward[:, -1] = self.state_transitions[1:len(self.states) + 1, -1] # below iterator skips first observation # (will be used when finalising P(O|model)) # iterate backwards through observations (time) [::-1] <- reverses list for t, observation in list(enumerate(self.observations[1:]))[::-1]: # print(t, observation) for state_index in range(len(self.states)): state_number = state_index + 1 # ^ for easier reading (arrays 0-indexed, _number 1-indexed) other_index = self.get_other_state_index(state_index) other_number = other_index + 1 # for 1 indexing # observation for transitions from the same state this_state_gaussian = gaussian( observation, self.states[state_index].mean, self.states[state_index].std_dev) # observation for transitions from the other state other_state_gaussian = gaussian( observation, self.states[other_index].mean, self.states[other_index].std_dev) # a * b * beta this_from_this = self.state_transitions[ state_number, state_number] * this_state_gaussian * self.backward[ state_index, t + 1] other_from_this = self.state_transitions[ state_number, other_number] * other_state_gaussian * self.backward[ other_index, t + 1] self.backward[state_index, t] = this_from_this + other_from_this return self.backward
def populate_forward(self): """Populate forward likelihoods for all states/times""" for t, observation in enumerate(self.observations): # iterate through observations (time) for state_index, state in enumerate(self.states): # both states at each step state_number = state_index + 1 # ^ for easier reading (arrays 0-indexed, _number 1-indexed) if t == 0: # calcualte initial, 0 = first row = initial self.forward[state_index, t] = self.state_transitions[ 0, state_number] * gaussian(observation, state.mean, state.std_dev) else: # each state for each time has two paths leading to it, # the same state (this) and the other state (other) other_index = self.get_other_state_index(state_index) other_number = other_index + 1 # for 1 indexing # previous value * prob of changing from previous state to current this_to_this = self.forward[state_index, t - 1] * self.state_transitions[ state_number, state_number] other_to_this = self.forward[ other_index, t - 1] * self.state_transitions[other_number, state_number] self.forward[ state_index, t] = (this_to_this + other_to_this) * gaussian( observation, state.mean, state.std_dev) return self.forward
def calculate_p_obs_backward(self): """Calculate, store and return P(O|model) going backwards""" sum = 0 for state_index, initial_likelihood in enumerate(self.backward[:, 0]): pi = self.state_transitions[0, state_index + 1] b = gaussian(self.observations[0], self.states[state_index].mean, self.states[state_index].std_dev) beta = initial_likelihood sum += pi * b * beta self.p_obs_backward = sum return sum
def transition_likelihood(self, from_index, to_index, t): """Get specific transition likelihood given state index either side and the timestep""" #from_index = i, from equations in the notes #to_index = j, from equations in the notes if t == 0: print("no transition likelihood for t == 0") forward = self.forward[from_index, t - 1] transition = self.state_transitions[from_index + 1, to_index + 1] emission = gaussian(self.observations[t], self.states[to_index].mean, self.states[to_index].std_dev) backward = self.backward[to_index, t] return (forward * transition * emission * backward) / self.observation_likelihood
from markov import MarkovModel from markovlog import LogMarkovModel fig_dpi = 200 fig_export = False x = np.linspace(-4, 8, 300) # x values for figures x_label = "Observation Space" y_label = "Probability Density" # %% [markdown] # State Probability Functions (1) # =================== # %% state_1_y = [gaussian(i, state1.mean, state1.std_dev) for i in x] state_2_y = [gaussian(i, state2.mean, state2.std_dev) for i in x] plt.plot(x, state_1_y, c='r', label="State 1") plt.plot(x, state_2_y, c='b', label="State 2") plt.legend() plt.title("State Probability Density Functions") plt.xlabel(x_label) plt.ylabel(y_label) plt.grid(linestyle="--") fig = matplotlib.pyplot.gcf() fig.set_dpi(fig_dpi) fig.set_tight_layout(True)