Ejemplo n.º 1
0
    def histograms(self, start_time, stop_time, depth, overlapping=True):

        L = stop_time.year - start_time.year + 1
        modslopes, noiseterm = self.sn_at_time(start_time,
                                               L,
                                               depth,
                                               overlapping=overlapping)
        ns = np.std(noiseterm)

        plt.hist(modslopes / ns,
                 20,
                 normed=True,
                 color=cm.Oranges(.8),
                 alpha=.5)
        lab = str(start_time.year) + "-" + str(stop_time.year)
        da.fit_normals_to_data(modslopes / ns,
                               color=cm.Oranges(.9),
                               lw=3,
                               label=lab + " Model projections")

        plt.hist(noiseterm / ns,
                 20,
                 normed=True,
                 color=cm.Purples(.8),
                 alpha=.5)
        da.fit_normals_to_data(noiseterm / ns,
                               color=cm.Purples(.9),
                               lw=3,
                               label="Noise")
        plt.xlabel("S/N")
        plt.ylabel("Normalized Frequency")
Ejemplo n.º 2
0
def dial(regression_output, ax, DVTitle, arrow_index):
    # Create bins to plot (equally sized)
    size_of_groups = np.ones(len(regression_output) * 2)

    # Create a pieplot, half white, half colored by logistic regression results
    white_half = np.ones(len(regression_output)) * .5
    color_half = (.81 - regression_output) / .81
    color_pallet = np.concatenate([color_half, white_half])

    cs = cm.Purples(color_pallet)
    pie_wedge_collection = plt.pie(size_of_groups, colors=cs)

    i = 0
    for pie_wedge in pie_wedge_collection[0]:
        pie_wedge.set_edgecolor(cm.Purples(color_pallet[i]))
        i = i + 1
    #ax.set_title(DVTitle)
    # add a circle at the center
    my_circle = plt.Circle((0, 0), 0.3, color='white')
    #p=plt.gcf()
    ax.add_artist(my_circle)

    # create the arrow, pointing at specified index
    arrow_angle = (arrow_index / float(len(regression_output))) * 3.14159
    arrow_x = 0.2 * math.cos(arrow_angle)
    arrow_y = 0.2 * math.sin(arrow_angle)
    ax.arrow(0,0,-arrow_x,arrow_y, width=.02, head_width=.05, \
        head_length=.1, fc='k', ec='k')
Ejemplo n.º 3
0
def da_colors(typ):
    d = {}
    d["h85"] = cm.Oranges(.8)  #cm.Dark2(0.)
    d["piC"] = cm.Greens(.7)  #cm.Dark2(.2)
    d["gpcp"] = cm.Purples(.5)  #cm.Dark2(.4)
    d["cmap"] = cm.Reds(.8)
    d["precl"] = cm.Purples(.9)
    return d[typ]
Ejemplo n.º 4
0
def get_dataset_color(dataset,depth=None):
    """Set the colors to ensure a uniform scheme for each dataset """
    dataset=string.lower(dataset)
    d={}
    d["dai"]=cm.Blues(.5)
    d["tree"]=cm.summer(.3)
    d["cru"]=cm.Blues(.9)

    #models
    d["picontrol"]=cm.Purples(.8)
    d["h85"]="k"
    d["tree_noise"]=cm.PiYG(.2)
    
    #Soil moisture
    
    d["merra2"]={}
    d["merra2"]["30cm"]=cm.copper(.3)
    d["merra2"]["2m"]=cm.copper(.3)
    d["gleam"]={}
    d["gleam"]["30cm"]=cm.Reds(.3)
    d["gleam"]["2m"]=cm.Reds(.7)
    if depth is None:
        return d[dataset]
    else:
        return d[dataset][depth]
Ejemplo n.º 5
0
def compare_pre_post_1100_noise(X,L=31,latbounds=None):
    time1=('1100-1-1','1399-12-31')
    c1=cm.Purples(.8)
    time2=('1400-1-1','2005-12-31')
    if latbounds is not None:
        obs=X.obs(latitude=latbounds)
        mma = MV.average(X.model(latitude=latbounds),axis=0)
        mma = mask_data(mma,obs[0].mask)
        solver = Eof(mma)
        obs = mask_data(obs,solver.eofs()[0].mask)
        truncnoise=solver.projectField(obs)[:,0]*da.get_orientation(solver)
        noisy1=truncnoise(time=time1)
        noisy2=truncnoise(time=time2)
    else:
        noisy1=X.noise(time=time1)
        noisy2=X.noise(time=time2)
    c2=cm.viridis(.1)
    plt.subplot(121)
    Plotting.Plotting.time_plot(noisy1,c=c1)
    Plotting.Plotting.time_plot(noisy2,c=c2)
    plt.ylabel("Projection")
    plt.title("(a): Noise time series")
    plt.subplot(122)
   
    plt.hist(b.bootstrap_slopes(noisy1,L),color=c1,normed=True,alpha=.5)
    da.fit_normals_to_data(b.bootstrap_slopes(noisy1,L),c=c1,label="1100-1400")
    plt.hist(b.bootstrap_slopes(noisy2,L),color=c2,normed=True,alpha=.5)
    da.fit_normals_to_data(b.bootstrap_slopes(noisy2,L),c=c2,label="1400-2005")
    plt.legend()
    plt.title("(b): 31-year trend distributions")
    return np.std(b.bootstrap_slopes(noisy1,L)),np.std(b.bootstrap_slopes(noisy2,L))
Ejemplo n.º 6
0
    def obs_SN(self, start_time, stop_time, depth, overlapping=True):
        self.project_soilmoisture("MERRA2")
        self.project_soilmoisture("GLEAM")
        L = stop_time.year - start_time.year + 1
        modslopes, noiseterm = self.sn_at_time(start_time,
                                               L,
                                               depth,
                                               overlapping=overlapping)
        ns = np.std(noiseterm)

        plt.hist(modslopes / ns,
                 20,
                 normed=True,
                 color=cm.Oranges(.8),
                 alpha=.5)
        lab = str(start_time.year) + "-" + str(stop_time.year)
        da.fit_normals_to_data(modslopes / ns,
                               color=cm.Oranges(.9),
                               lw=3,
                               label=lab +
                               " trends in H85 projections onto fingerprint")

        plt.hist(noiseterm / ns,
                 20,
                 normed=True,
                 color=cm.Purples(.8),
                 alpha=.5)
        da.fit_normals_to_data(
            noiseterm / ns,
            color=cm.Purples(.9),
            lw=3,
            label=str(L) +
            "-year trends in piControl projection onto fingerprint")
        plt.xlabel("S/N")
        plt.ylabel("Normalized Frequency")

        merra = self.OBS_PROJECTIONS["MERRA2"][depth](time=(start_time,
                                                            stop_time))
        gleam = self.OBS_PROJECTIONS["GLEAM"][depth](time=(start_time,
                                                           stop_time))
        merrasig = cmip5.get_linear_trends(merra) / ns
        plt.axvline(merrasig, label="MERRA2", c="b", lw=3)
        gleamsig = cmip5.get_linear_trends(gleam) / ns
        plt.axvline(gleamsig, label="GLEAM", c="r", lw=3)
        plt.legend()
Ejemplo n.º 7
0
def plot_compare_phi_psi(neurons, epsilon_values, tau_y_values, psi_values):

    '''This only works for summary type saves.'''

    fig, axs = plt.subplots(1, len(psi_values), sharey=True, figsize=(5*len(psi_values)+2, 5))
    cm_section = np.linspace(0.3, 1, len(tau_y_values))
    colours = []
    colours.append([ cm.Blues(x) for x in cm_section ])
    colours.append([ cm.Oranges(x) for x in cm_section ])
    colours.append([ cm.Purples(x) for x in cm_section ])
    colours.append([ cm.Greens(x) for x in cm_section ])


    for j, epsilon in enumerate(epsilon_values):

        for k, tau_y in enumerate(tau_y_values):

            label = "$\\tau_y={}$, $\epsilon={}$".format(tau_y,epsilon)

            E = []
            phi_values = []

            for i in range(len(psi_values)):
                E.append([])
                phi_values.append([])

            for neuron in neurons:
                
                if neuron.hyper['psi'] in psi_values:

                    phi_values[psi_values.index(neuron.hyper['psi'])].append(neuron.hyper['phi'])

                    for log in neuron.logs:
                        
                        if log[0]['tau_y'] == tau_y and log[0]['epsilon'] == epsilon:
                    
                            E[psi_values.index(neuron.hyper['psi'])].append(log[2]-log[3])

            for i in range(len(psi_values)):
                
                if i == 0:
                    axs[i].plot(phi_values[i], E[i], label=label, color=colours[j][k])
                    axs[i].set_ylabel('$E$')
                else:
                    axs[i].plot(phi_values[i], E[i], color=colours[j][k])
                axs[i].set_title('$\psi={}$'.format(psi_values[i]))
                axs[i].set_xlabel('$\phi$')

            
    fig.legend(loc='center left', bbox_to_anchor=(1, 0.5))
    # fig.legend(loc='upper center', bbox_to_anchor=(0.5, -0.02), fancybox=True, shadow=True, ncol=6)

    fig.tight_layout()
    plt.show()

    return fig
Ejemplo n.º 8
0
def colorregions(region):
    """Set the colors to ensure a uniform scheme for each region """
    d={}
    d["ALL"]="k"
    d["NHDA"]=cm.gray(.5)
    d["NADA"]=cm.Purples(.5)
    d["OWDA"]=cm.Blues(.5)
    d["MXDA"]=cm.PiYG(.1)
    d["ANZDA"]=cm.PiYG(.8)
    d["MADA"]=cm.Oranges(.5)
    d["GDA"]="k"
    return d[region]
def get_colors(color_c=3, color_step=100):
    cmap_colors = np.vstack((
        cm.Oranges(np.linspace(0.4, 1, color_step)),
        cm.Reds(np.linspace(0.4, 1, color_step)),
        cm.Greys(np.linspace(0.4, 1, color_step)),
        cm.Purples(np.linspace(0.4, 1, color_step)),
        cm.Blues(np.linspace(0.4, 1, color_step)),
        cm.Greens(np.linspace(0.4, 1, color_step)),
        cm.pink(np.linspace(0.4, 1, color_step)),
        cm.copper(np.linspace(0.4, 1, color_step)),
    ))
    return cmap_colors[np.arange(color_c * color_step) % (color_step * 8)]
Ejemplo n.º 10
0
    def __init__(self,data_pred,data_gt,colors,img,types,gif_name = "test.gif", plot_ = False, save = True):

        self.img = img
        self.xs_pred = data_pred[:,:,0]
        self.ys_pred = data_pred[:,:,1]

        self.xs_gt = data_gt[:,:,0]
        self.ys_gt = data_gt[:,:,1]

        self.types = types 


        self.nb_agents = self.xs_pred.shape[0]
        self.margin = 1

        self.nb_frames = self.xs_pred.shape[1]
        self.gif_name = gif_name
        self.plot_ = plot_
        self.save = save

        self.fps = 1
        self.colors = colors

        self.lin_size = 100

        lin = np.linspace(0.6, 0.8, self.lin_size)
 
        self.color_dict = {
            "bicycle":cm.Blues(lin),
            "pedestrian":cm.Reds(lin),
            "car":cm.Greens(lin),
            "skate":cm.Greys(lin),
            "cart":cm.Purples(lin),
            "bus":cm.Oranges(lin)
        }

        self.colors = [self.color_dict[type_][np.random.randint(self.lin_size)] for type_ in self.types]

        self.history = 4

        self.get_plots()
Ejemplo n.º 11
0
def p(x, mask):
    # why is the resolution so bad?
    #plt.imsave("mat.png", x, format="png", cmap=cm.hot)
    fig, ax = plt.subplots(figsize=(20, 20))
    color = cm.Purples(plt.Normalize()(x))
    grey = color.copy()
    #grey[:,:,0] = 0.6
    #grey[:,:,1] = 0.6
    #grey[:,:,2] = 0.65
    #grey[:,:,0] = 0.9
    #grey[:,:,1] = 0.9
    #grey[:,:,2] = 0.95
    #mask = mask[:,:,np.newaxis]
    #im = ax.imshow(mask * color + (1-mask) * grey)
    im = ax.imshow(x, cmap=cm.Purples)

    plt.Axes(fig, [0, 0, 1, 1])
    ax.patch.set_edgecolor("black")
    ax.patch.set_linewidth("1")
    ax.axis("off")
    #plt.show()
    #import pdb; pdb.set_trace()
    plt.savefig("mat.png", bbox_inches="tight", pad_inches=0)
Ejemplo n.º 12
0
    # LOAD FILES FOR VARIABLE RATE
    # load_file2 = '/may12'
    # lwe2 = np.load(os.getcwd() + '/results' + load_file2 + '/lwe_may9.npy')
    # lwp2 = np.load(os.getcwd() + '/results' + load_file2 + '/lwp_may9.npy')
    # le2 = np.load(os.getcwd() + '/results' + load_file2 + '/l_e_may9.npy')
    # lp2 = np.load(os.getcwd() + '/results' + load_file2 + '/l_p_may9.npy')

    # assume at this point that files are formatted so that l_ is 2 x ib and l_2 is 2 x rate

    # SET UP STUFF TO PLOT
    b_c = (1, 0.5, 0.5)  # Define burst colour. '#D3084C'
    b_light_c = (1, 0.8, 0.8)  # Define second burst colour. '#CB7390'
    colour_samples = np.linspace(0.6, 0.95, 2)
    Oranges = [cm.Reds(ix) for ix in colour_samples]
    Purples = [cm.Purples(ix) for ix in colour_samples]
    fs = 20
    fw = 'bold'

    y_axis1i = lp
    y_axis1ii = le + lp
    x_axis1 = np.arange(2, 6, 1)
    width = 0.35

    y_axis2i = lp1 / lp10
    y_axis2ii = le1 + lp1
    x_axis2 = isis.sum(0)[0] / (
        8192 * 123
    ) * 1000  #np.linspace(0.003, 0.018, 15)  #np.linspace(0.004, 0.014, 10)

    # PLOT STUFF
Ejemplo n.º 13
0
        geojson['properties']['category_more'] = list(cat_distinct)
        geojson['properties']['time_distrib'] = list(timeofday_distr)
        geojson['properties']['time_more'] = list(timeofday_distinct)
        geojson['properties']['days_distrib'] = list(dayofweek_distr)
        geojson['properties']['days_more'] = list(dayofweek_distinct)
        geojson['properties']['weight'] = float(theta)
        neighborhoods.append(geojson)

    neighborhoods.sort(key=lambda x: x['properties']['weight'], reverse=True)
    a = pretty_floats({"type": "FeatureCollection", "features": neighborhoods})

    cat_colors = [
        cmlib.Oranges(x) for x in np.linspace(0, 1, len(main_cats_plot))
    ]
    time_colors = [cmlib.Greens(x) for x in np.linspace(0, 1, len(timeOfDay))]
    day_colors = [cmlib.Purples(x) for x in np.linspace(0, 1, len(dayOfWeek))]

    # select top regions based on volume
    MAX_REGIONS = args.max_regions
    results = sorted(enumerate(a['features']),
                     key=lambda x: x[1]['properties']['weight'],
                     reverse=True)[:MAX_REGIONS]

    with zipfile.ZipFile(city + '.zip', 'w') as myzip:
        for region_id, res in results:
            stats = res['properties']

            fig, ax = plt.subplots(1, 4, figsize=(21, 6))
            fig.suptitle("{} - Weight: {}%".format(stats['name'],
                                                   int(100 * stats['weight'])),
                         size=18)