Ejemplo n.º 1
0
def normalize(image):
    # This method normalizes value of each pixel, converts image to unsigned int
    # to get only 256 possible pixel values and then normalizes values to range between 0-1
    image = image.astype(np.float64)
    image /= np.max(image)
    image *= 255

    image = image.astype(np.uint8)

    image = image.astype(np.float32)
    image /= 255
    return image
def scale_between_0_255(image):
    """
    Utility function to scale all pixel values of an integer to be between 0 and 255.
    Returns the scaled image.
    """
    image = 255 * (image - image.min()) / (image.max() - image.min())
    image = image.astype('uint8')
    return image
Ejemplo n.º 3
0
def main(request):
    if request.method == 'POST':
        form = form_canvas(request.POST)
        tim = request.POST.get('im')

        if form.is_valid():
            data = base64.b64decode(tim)
            print(type(data))
            print(
                '***************************************************************'
            )

            img0 = "ml_app/test.bmp"

            with open(img0, 'wb') as f:
                f.write(data)
                f.close

            o = count(name=img0)
            o.save()

            print(type(img0))
            print('+++++++++++++++++++++++++++++++++++')

            # to save image in different files
            '''
            img1 = Image.open(img0)
            idi = o.id
            a = "C:/Users/Yzat/Downloads/ML_Django/Credit_Approval/Credit_project/media/"
            adr = a + str(idi) + '.bmp'
            img1.save(adr)
            '''

            ####################    ML Model  ##################################
            new_model = tf.keras.models.load_model('ml_app/yzat.h5')
            img = cv2.imread('ml_app/test.bmp', -1)
            b, g, r, alpha = cv2.split(img)
            img_BGR = cv2.merge((r, g, alpha))
            image = cv2.cvtColor(img_BGR, cv2.COLOR_BGR2GRAY)
            image = cv2.resize(image, (28, 28))
            image = image.astype('float32')
            image = image.reshape(1, 28, 28, 1)
            image /= 255
            predictions = new_model.predict(image)
            yzat_predictions = np.argmax(predictions)
            print('******************', yzat_predictions,
                  '**********************')
            messages.success(request, '{}'.format(yzat_predictions))

            #################### ML Model End ####################################

            return HttpResponseRedirect('/canvas')
        else:

            return HttpResponseRedirect('/canvas')

    else:
        return render(request, 'canvas.html')
Ejemplo n.º 4
0
    def pcaProcess(self, img: np.array, dim=15):
        img = img.astype(float)
        u, s, vt = np.linalg.svd(img)
        # 取前dim 维的特征向量(比如(72, 68)-> (68, 68)的cov, 对应特征矩阵为(68, dim)的shape)

        # 此处的sample操作是图像绘制时使用的,没有达到实际的压缩保存效果
        # sample = u[:, :dim].dot(np.diag(s[:dim])).dot(vt[:dim, :])

        # 此操作才是真正进行压缩(PCA)
        # sample = u[:, :dim].dot(np.diag(s[:dim]))
        sample = img.dot(u[:, :dim])

        # 将一个dim * dim 的矩阵reshape成一个行向量
        return sample.reshape(sample.size)
Ejemplo n.º 5
0
def load_using_bioformats(path, z=0, t=0):
    '''Load the given image file using the Bioformats library
    
    path: path to the file
    z: the frame index in the z (depth) dimension.
    t: the frame index in the time dimension.
    
    Returns either a 2-d (grayscale) or 3-d (2-d + 3 RGB planes) image
    '''
    rdr = ImageReader()
    rdr.setId(path)
    width = rdr.getSizeX()
    height = rdr.getSizeY()
    pixel_type = rdr.getPixelType()
    little_endian = rdr.isLittleEndian()
    if pixel_type == FormatTools.INT8:
        dtype = np.char
        scale = 255
    elif pixel_type == FormatTools.UINT8:
        dtype = np.uint8
        scale = 255
    elif pixel_type == FormatTools.UINT16:
        dtype = '<u2' if little_endian else '>u2'
        scale = 65536
    elif pixel_type == FormatTools.INT16:
        dtype = '<i2' if little_endian else '>i2'
        scale = 65536
    elif pixel_type == FormatTools.UINT32:
        dtype = '<u4' if little_endian else '>u4'
        scale = 2**32
    elif pixel_type == FormatTools.INT32:
        dtype = '<i4' if little_endian else '>i4'
        scale = 2**32
    elif pixel_type == FormatTools.FLOAT:
        dtype = '<f4' if little_endian else '>f4'
        scale = 1
    elif pixel_type == FormatTools.DOUBLE:
        dtype = '<f8' if little_endian else '>f8'
        scale = 1
    max_sample_value = rdr.getMetadataValue('MaxSampleValue')
    if max_sample_value is not None:
        try:
            scale = formatreader.jutil.call(env, max_sample_value, 
                                            'intValue', '()I')
        except:
            sys.stderr.write("WARNING: failed to get MaxSampleValue for image. Intensities may be improperly scaled\n")
    if rdr.getRGBChannelCount() > 1:
        rdr.close()
        rdr = ChannelSeparator(ImageReader())
        rdr.setId(path)
        red_image, green_image, blue_image = [
            np.frombuffer(rdr.openBytes(rdr.getIndex(z,i,t)),dtype)
            for i in range(3)]
        image = np.dstack((red_image, green_image, blue_image))
        image.shape=(height,width,3)
    else:
        index = rdr.getIndex(z,0,t)
        image = np.frombuffer(rdr.openBytes(index),dtype)
        image.shape = (height,width)
    rdr.close()
    image = image.astype(float) / float(scale)
    return image
Ejemplo n.º 6
0
def load_using_bioformats(path, z=0, t=0):
    '''Load the given image file using the Bioformats library
    
    path: path to the file
    z: the frame index in the z (depth) dimension.
    t: the frame index in the time dimension.
    
    Returns either a 2-d (grayscale) or 3-d (2-d + 3 RGB planes) image
    '''
    rdr = ImageReader()
    rdr.setId(path)
    width = rdr.getSizeX()
    height = rdr.getSizeY()
    pixel_type = rdr.getPixelType()
    little_endian = rdr.isLittleEndian()
    if pixel_type == FormatTools.INT8:
        dtype = np.char
        scale = 255
    elif pixel_type == FormatTools.UINT8:
        dtype = np.uint8
        scale = 255
    elif pixel_type == FormatTools.UINT16:
        dtype = '<u2' if little_endian else '>u2'
        scale = 65536
    elif pixel_type == FormatTools.INT16:
        dtype = '<i2' if little_endian else '>i2'
        scale = 65536
    elif pixel_type == FormatTools.UINT32:
        dtype = '<u4' if little_endian else '>u4'
        scale = 2**32
    elif pixel_type == FormatTools.INT32:
        dtype = '<i4' if little_endian else '>i4'
        scale = 2**32
    elif pixel_type == FormatTools.FLOAT:
        dtype = '<f4' if little_endian else '>f4'
        scale = 1
    elif pixel_type == FormatTools.DOUBLE:
        dtype = '<f8' if little_endian else '>f8'
        scale = 1
    max_sample_value = rdr.getMetadataValue('MaxSampleValue')
    if max_sample_value is not None:
        try:
            scale = formatreader.jutil.call(env, max_sample_value, 'intValue',
                                            '()I')
        except:
            sys.stderr.write(
                "WARNING: failed to get MaxSampleValue for image. Intensities may be improperly scaled\n"
            )
    if rdr.getRGBChannelCount() > 1:
        rdr.close()
        rdr = ChannelSeparator(ImageReader())
        rdr.setId(path)
        red_image, green_image, blue_image = [
            np.frombuffer(rdr.openBytes(rdr.getIndex(z, i, t)), dtype)
            for i in range(3)
        ]
        image = np.dstack((red_image, green_image, blue_image))
        image.shape = (height, width, 3)
    else:
        index = rdr.getIndex(z, 0, t)
        image = np.frombuffer(rdr.openBytes(index), dtype)
        image.shape = (height, width)
    rdr.close()
    image = image.astype(float) / float(scale)
    return image
def main(argv=None):
    train_para = {
        'lr': [1e-4, 1e-5, 1e-6],
        'lr_iter': [10000, 20000],
        'max_iter': 30000,
        'show_loss_freq': 1000,
        'snapshot_freq': 5000,
        'snapshot_dir': 'snapshots_posenet'
    }

    # Start TF
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
    tf.train.start_queue_runners(sess=sess)

    # get dataset
    dataset_GANerate = GANerate(batchnum=32)
    image_crop_eval, keypoint_uv21_eval, keypoint_uv_heatmap_eval, keypoint_xyz21_normed_eval = dataset_GANerate.get_batch_data_eval

    # build network
    evaluation = tf.placeholder_with_default(True, shape=())
    net = ColorHandPose3DNetwork()

    image_crop_eval = tf.add(image_crop_eval,
                             0,
                             name='input_node_representations')
    keypoints_scoremap_eval = net.inference_pose2d(image_crop_eval, train=True)
    s = keypoint_uv_heatmap_eval.get_shape().as_list()
    keypoints_scoremap_eval = [
        tf.image.resize_images(x, (s[1], s[2]))
        for x in keypoints_scoremap_eval
    ]

    # Loss
    loss_eval = 0.0
    for i, pred_item in enumerate(keypoints_scoremap_eval):
        loss_eval += tf.reduce_sum(
            tf.sqrt(
                tf.reduce_mean(tf.square(pred_item - keypoint_uv_heatmap_eval),
                               [1, 2])))
    keypoints_scoremap_eval = keypoints_scoremap_eval[-1]
    keypoints_scoremap_eval = tf.add(keypoints_scoremap_eval,
                                     0,
                                     name='final_output_node_representations')
    init = tf.global_variables_initializer()
    config = tf.ConfigProto()
    # occupy gpu gracefully
    config.gpu_options.allow_growth = True
    with tf.Session(config=config) as sess:
        init.run()
        checkpoint_path = './snapshots_posenet'
        model_name = 'model-42'
        if checkpoint_path:
            saver = tf.train.Saver(max_to_keep=10)
            saver.restore(sess, checkpoint_path + '/' + model_name)
            print("restore from " + checkpoint_path + '/' + model_name)
        create_pb = True
        if create_pb:
            input_graph_def = sess.graph.as_graph_def()
            variable_names = [v.name for v in input_graph_def.node]
            print(
                '==================Model Analysis Report variable_names======================'
            )
            print(variable_names)
            print(
                '==================Model Analysis Report operations======================'
            )
            for op in sess.graph.get_operations():
                print(str(op.name))
            stats_graph(sess.graph)
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess,  # The session
                input_graph_def,  # input_graph_def is useful for retrieving the nodes
                'final_output_node_representations'.split(","))

            with tf.gfile.FastGFile(checkpoint_path + '/' + model_name + ".pb",
                                    "wb") as f:
                f.write(output_graph_def.SerializeToString())

        print("Start testing...")
        path = './snapshots_posenet/baseline'
        import matplotlib.image
        loss_eval_v = 0.0
        loss_piex_save = 0.0
        for one_epoch in tqdm(range(100)):
            image, heatmap, heatmap_pre, keypoint_uv21, loss_eval_v = sess.run(
                [
                    image_crop_eval, keypoint_uv_heatmap_eval,
                    keypoints_scoremap_eval, keypoint_uv21_eval, loss_eval
                ])
            image = (image + 0.5) * 255
            image = image.astype(np.int16)

            #根据热度图计算最大的下标
            keypoint_uv21_pre = np.zeros_like(keypoint_uv21)
            for i in range(heatmap_pre.shape[0]):
                for j in range(heatmap_pre.shape[-1]):
                    heatmap_pre_tmp = heatmap_pre[i, :, :, j]
                    cor_tmp = unravel_index(heatmap_pre_tmp.argmax(),
                                            heatmap_pre_tmp.shape)
                    keypoint_uv21_pre[i, j, 0] = cor_tmp[1]
                    keypoint_uv21_pre[i, j, 1] = cor_tmp[0]

            loss_piex = keypoint_uv21_pre - keypoint_uv21
            loss_piex = np.sqrt(
                np.square(loss_piex[:, :, 0]) + np.square(loss_piex[:, :, 1]))
            loss_piex_save = loss_piex_save + np.mean(loss_piex)

            # visualize
            fig = plt.figure(1)
            plt.clf()
            ax1 = fig.add_subplot(221)
            ax1.imshow(image[0])
            plot_hand(keypoint_uv21[0], ax1)

            ax3 = fig.add_subplot(223)
            ax3.imshow(image[0])
            ax3.set_title(str(loss_piex[0, :].astype(np.int32)), fontsize=5)
            plot_hand(keypoint_uv21_pre[0], ax3)
            plot_hand(keypoint_uv21[0], ax3)

            ax2 = fig.add_subplot(222)
            ax4 = fig.add_subplot(224)
            ax2.imshow(np.sum(heatmap[0],
                              axis=-1))  # 第一个batch的维度 hand1(0~31) back1(32~63)
            ax2.scatter(keypoint_uv21[0, :, 0],
                        keypoint_uv21[0, :, 1],
                        s=10,
                        c='k',
                        marker='.')
            ax4.imshow(np.sum(heatmap_pre[0],
                              axis=-1))  # 第一个batch的维度 hand1(0~31) back1(32~63)
            ax4.scatter(keypoint_uv21_pre[0, :, 0],
                        keypoint_uv21_pre[0, :, 1],
                        s=10,
                        c='k',
                        marker='.')

            plt.savefig(path + '/image/' + str(one_epoch).zfill(5) + '.png')
        loss_eval_v = loss_eval_v / 100
        loss_piex_save = loss_piex_save / 100
        print(loss_piex_save)  #4.472415127649567
Ejemplo n.º 8
0
 def standardPCA(self, img: np.array):
     img = img.astype(float)
     sample = self.pca.fit_transform(img)
     return sample.reshape(sample.size)
Ejemplo n.º 9
0
            if (new_img[i, j] == 25):
                x = np.sum(new_img[i:i + 3, j:j + 3] * kernel)
                if (x >= 255):
                    new_img2[i, j] = 255
            elif (new_img[i, j] == 255):
                new_img2[i, j] = 255
    return new_img2


img = gray_me(img)
# smoothning
kernel = np.array([[1 / 16, 2 / 16, 1 / 16], [1 / 8, 1 / 4, 1 / 8],
                   [1 / 16, 2 / 16, 1 / 16]])
img = apply_kernel(kernel, img)
#vertical
kernel = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
imgy = apply_kernel(kernel, img)
#horizontal
kernel = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
imgx = apply_kernel(kernel, img)
##SOBEL
img = np.sqrt(np.square(imgx) + np.square(imgy))
##canny
# theta=np.arctan2(imgy,imgx)
# img=suppress_nonmax(img,theta)
# img=threshold(img)

img = img.astype(np.uint8)
po = im.fromarray(imgy)
# po.save("horizontal.png")
im._show(po)
Ejemplo n.º 10
0
 def __call__(self, sample):
     image, fixation = sample['image'], sample['fixation']
     image = image.astype(np.float32) / 255.0
     fixation = fixation.astype(np.float32) / 255.0
     return {'image': image, 'fixation': fixation}