Ejemplo n.º 1
0
def draw_networkx_nodes(G,
                        pos,
                        nodelist=None,
                        node_size=300,
                        node_color='r',
                        node_shape='o',
                        alpha=1.0,
                        cmap=None,
                        vmin=None,
                        vmax=None,
                        ax=None,
                        **kwds):
    """Draw nodes of graph G

    This draws only the nodes of the graph G.

    pos is a dictionary keyed by vertex with a two-tuple
    of x-y positions as the value.
    See networkx.layout for functions that compute node positions.

    nodelist is an optional list of nodes in G to be drawn.
    If provided only the nodes in nodelist will be drawn.
    
    see draw_networkx for the list of other optional parameters.

    """
    from matplotlib.pylab import gca, hold, draw_if_interactive
    if ax is None:
        ax = gca()

    if nodelist is None:
        nodelist = G.nodes()

    x = asarray([pos[v][0] for v in nodelist])
    y = asarray([pos[v][1] for v in nodelist])

    node_collection = ax.scatter(x,
                                 y,
                                 s=node_size,
                                 c=node_color,
                                 marker=node_shape,
                                 cmap=cmap,
                                 vmin=vmin,
                                 vmax=vmax,
                                 alpha=alpha)

    node_collection.set_zorder(2)
    return node_collection
Ejemplo n.º 2
0
    def draw_markers(self, gc, path, rgbFace, x, y, trans):
        self.check_gc(gc, rgbFace)
        fillp = rgbFace is not None
        marker = self.file.markerObject(path, fillp, self.gc._linewidth)
        x, y = trans.numerix_x_y(asarray(x), asarray(y))
        x, y = self.dpi_factor * x, self.dpi_factor * y
        nan_at = isnan(x) | isnan(y)

        self.file.output(Op.gsave)
        ox, oy = 0, 0
        for i in range(len(x)):
            if nan_at[i]: continue
            dx, dy, ox, oy = x[i] - ox, y[i] - oy, x[i], y[i]
            self.file.output(1, 0, 0, 1, dx, dy, Op.concat_matrix, marker,
                             Op.use_xobject)
        self.file.output(Op.grestore)
Ejemplo n.º 3
0
 def set_dashes(self, offset, dashes):
     self._dashes = offset, dashes
     if dashes == None:
         self.ctx.set_dash([], 0)  # switch dashes off
     else:
         self.ctx.set_dash(self.renderer.points_to_pixels(asarray(dashes)),
                           offset)
Ejemplo n.º 4
0
 def points_to_pixels(self, points):
     """
     convert point measures to pixes using dpi and the pixels per
     inch of the display
     """
     return asarray(points) * (PIXELS_PER_INCH / 72.0 * self.dpi.get() /
                               72.0)
Ejemplo n.º 5
0
 def set_dashes(self, offset, dashes):
     self._dashes = offset, dashes
     if dashes == None:
         self.ctx.set_dash([], 0)  # switch dashes off
     else:
         dashes_pixels = self.renderer.points_to_pixels(asarray(dashes))
         self.ctx.set_dash(dashes_pixels, offset)
Ejemplo n.º 6
0
 def to_rgba(self, x, alpha=1.0):
     # assume normalized rgb, rgba
     x = asarray(x)
     if len(x.shape) > 2:
         return x
     x = self.norm(x)
     return self.cmap(x, alpha)
Ejemplo n.º 7
0
    def __call__(self, value):

        vmin = self.vmin
        vmax = self.vmax

        if type(value) in [IntType, FloatType]:
            vtype = 'scalar'
            val = array([value])
        else:
            vtype = 'array'
            val = nx.asarray(value)

        # if both vmin is None and vmax is None, we'll automatically
        # norm the data to vmin/vmax of the actual data, so the
        # clipping step won't be needed.
        if vmin is None and vmax is None:
            needs_clipping = False
        else:
            needs_clipping = True

        if vmin is None or vmax is None:
            rval = nx.ravel(val)
            #do this if sentinels (values to ignore in data)
            if self.ignore:
                sortValues = nx.sort(rval)
                if vmin is None:
                    # find the lowest non-sentinel value
                    for thisVal in sortValues:
                        if thisVal not in self.ignore:
                            vmin = thisVal  #vmin is the lowest non-sentinel value
                            break
                    else:
                        vmin = 0.
                if vmax is None:
                    for thisVal in sortValues[::-1]:
                        if thisVal not in self.ignore:
                            vmax = thisVal  #vmax is the greatest non-sentinel value
                            break
                    else:
                        vmax = 0.
            else:
                if vmin is None: vmin = min(rval)
                if vmax is None: vmax = max(rval)
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin == vmax:
            return 0. * value
        else:
            if needs_clipping:
                val = nx.clip(val, vmin, vmax)
            result = (1.0 / (vmax - vmin)) * (val - vmin)

        # replace sentinels with original (non-normalized) values
        for thisIgnore in self.ignore:
            result = nx.where(val == thisIgnore, thisIgnore, result)

        if vtype == 'scalar':
            result = result[0]
        return result
        def __call__(self, value):

                vmin = self.vmin
                vmax = self.vmax

                if type(value) in [IntType, FloatType]:
                        vtype = 'scalar'
                        val = array([value])
                else:
                        vtype = 'array'
                        val = nx.asarray(value)

                # if both vmin is None and vmax is None, we'll automatically
                # norm the data to vmin/vmax of the actual data, so the
                # clipping step won't be needed.
                if vmin is None and vmax is None:
                        needs_clipping = False
                else:
                        needs_clipping = True

                if vmin is None or vmax is None:
                        rval = nx.ravel(val)
                        #do this if sentinels (values to ignore in data)
                        if self.ignore:
                                sortValues=nx.sort(rval)
                                if vmin is None: 
                                        # find the lowest non-sentinel value
                                        for thisVal in sortValues:
                                                if thisVal not in self.ignore:
                                                        vmin=thisVal #vmin is the lowest non-sentinel value
                                                        break
                                        else:
                                                vmin=0.
                                if vmax is None: 
                                        for thisVal in sortValues[::-1]:
                                                if thisVal not in self.ignore:
                                                        vmax=thisVal #vmax is the greatest non-sentinel value
                                                        break
                                        else:
                                                vmax=0.
                        else:
                                if vmin is None: vmin = min(rval)
                                if vmax is None: vmax = max(rval)
                if vmin > vmax:
                        raise ValueError("minvalue must be less than or equal to maxvalue")
                elif vmin==vmax:
                        return 0.*value
                else:
                        if needs_clipping:
                                val = nx.clip(val,vmin, vmax)
                        result = (1.0/(vmax-vmin))*(val-vmin)

                # replace sentinels with original (non-normalized) values
                for thisIgnore in self.ignore:
                        result = nx.where(val==thisIgnore,thisIgnore,result)

                if vtype == 'scalar':
                        result = result[0]
                return result
Ejemplo n.º 9
0
    def draw_markers(self, gc, path, rgbFace, x, y, trans):
	self.check_gc(gc, rgbFace)
	fillp = rgbFace is not None
	marker = self.file.markerObject(path, fillp, self.gc._linewidth)
	x, y = trans.numerix_x_y(asarray(x), asarray(y))
	x, y = self.dpi_factor * x, self.dpi_factor * y
	nan_at = isnan(x) | isnan(y)

	self.file.output(Op.gsave)
	ox, oy = 0, 0
	for i in range(len(x)):
	    if nan_at[i]: continue
	    dx, dy, ox, oy = x[i]-ox, y[i]-oy, x[i], y[i]
	    self.file.output(1, 0, 0, 1, dx, dy, 
			     Op.concat_matrix,
			     marker, Op.use_xobject)
	self.file.output(Op.grestore)
Ejemplo n.º 10
0
 def to_rgba(self, x, alpha=1.0):
     # assume normalized rgb, rgba
     #print '0', type(x), x.shape
     x = asarray(x)
     #print '1', type(x), x.shape
     if len(x.shape)>2: return x
     x = self.norm(x)
     x = self.cmap(x, alpha)
     return x
Ejemplo n.º 11
0
 def to_rgba(self, x, alpha=1.0):
     # assume normalized rgb, rgba
     #print '0', type(x), x.shape
     x = asarray(x)
     #print '1', type(x), x.shape
     if len(x.shape) > 2: return x
     x = self.norm(x)
     x = self.cmap(x, alpha)
     return x
Ejemplo n.º 12
0
    def set_dashes(self, dash_offset, dash_list):
        GraphicsContextBase.set_dashes(self, dash_offset, dash_list)

        if dash_list == None:
            self.gdkGC.line_style = gdk.LINE_SOLID
        else:
            pixels = self.renderer.points_to_pixels(asarray(dash_list))
            dl = [max(1, int(round(val))) for val in pixels]
            self.gdkGC.set_dashes(dash_offset, dl)
            self.gdkGC.line_style = gdk.LINE_ON_OFF_DASH
Ejemplo n.º 13
0
    def set_dashes(self, dash_offset, dash_list):
        GraphicsContextBase.set_dashes(self, dash_offset, dash_list)

        if dash_list == None:
            self.gdkGC.line_style = gdk.LINE_SOLID
        else:
            pixels = self.renderer.points_to_pixels(asarray(dash_list))
            dl = [max(1, int(round(val))) for val in pixels]
            self.gdkGC.set_dashes(dash_offset, dl)
            self.gdkGC.line_style = gdk.LINE_ON_OFF_DASH
Ejemplo n.º 14
0
    def dash_path(self, gc, path):
        """
        Add dashes to the path and return it if dashes are set
        """
        offset, dashes = gc.get_dashes()
        if dashes is not None:

            dashes = tuple(self.points_to_pixels(asarray(dashes)))            
            return path.dash(offset, dashes)
        else:
            return path
Ejemplo n.º 15
0
    def dash_path(self, gc, path):
        """
        Add dashes to the path and return it if dashes are set
        """
        offset, dashes = gc.get_dashes()
        if dashes is not None:

            dashes = tuple(self.points_to_pixels(asarray(dashes)))
            return path.dash(offset, dashes)
        else:
            return path
Ejemplo n.º 16
0
def get_colours(n):
    """ Return n pastel colours. """
    base = asarray([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

    if n <= 3:
        return base[0:n]

    # how many new colours to we need to insert between
    # red and green and between green and blue?
    needed = (((n - 3) + 1) / 2, (n - 3) / 2)

    colours = []
    for start in (0, 1):
        for x in linspace(0, 1, needed[start] + 2):
            colours.append((base[start] * (1.0 - x)) + (base[start + 1] * x))

    return [pastel(c) for c in colours[0:n]]
Ejemplo n.º 17
0
def get_colours(n):
    """ Return n pastel colours. """
    base = asarray([[1,0,0], [0,1,0], [0,0,1]])

    if n <= 3:
        return base[0:n]

    # how many new colours to we need to insert between
    # red and green and between green and blue?
    needed = (((n - 3) + 1) / 2, (n - 3) / 2)

    colours = []
    for start in (0, 1):
        for x in linspace(0, 1, needed[start]+2):
            colours.append((base[start] * (1.0 - x)) +
                           (base[start+1] * x))

    return [pastel(c) for c in colours[0:n]]
Ejemplo n.º 18
0
def draw_networkx_nodes(G,
                        pos,
                        nodelist=None,
                        node_size=300,
                        node_color='r',
                        node_shape='o',
                        alpha=1.0,
                        cmap=None,
                        vmin=None,
                        vmax=None,
                        ax=None,
                        linewidths=None,
                        **kwds):
    """Draw nodes of graph G

    This draws only the nodes of the graph G.

    pos is a dictionary keyed by vertex with a two-tuple
    of x-y positions as the value.
    See networkx.layout for functions that compute node positions.

    nodelist is an optional list of nodes in G to be drawn.
    If provided only the nodes in nodelist will be drawn.
    
    see draw_networkx for the list of other optional parameters.

    """
    if ax is None:
        ax = matplotlib.pylab.gca()

    if nodelist is None:
        nodelist = G.nodes()

    if not nodelist or len(nodelist) == 0:  # empty nodelist, no drawing
        return None

    try:
        xy = asarray([pos[v] for v in nodelist])
    except KeyError, e:
        raise networkx.NetworkXError('Node %s has no position.' % e)
Ejemplo n.º 19
0
def draw_networkx_nodes(G, pos,
                        nodelist=None,
                        node_size=300,
                        node_color='r',
                        node_shape='o',
                        alpha=1.0,
                        cmap=None,
                        vmin=None,
                        vmax=None, 
                        ax=None,
                        linewidths=None,
                        **kwds):
    """Draw nodes of graph G

    This draws only the nodes of the graph G.

    pos is a dictionary keyed by vertex with a two-tuple
    of x-y positions as the value.
    See networkx_v099.layout for functions that compute node positions.

    nodelist is an optional list of nodes in G to be drawn.
    If provided only the nodes in nodelist will be drawn.
    
    see draw_networkx_v099 for the list of other optional parameters.

    """
    if ax is None:
        ax=matplotlib.pylab.gca()

    if nodelist is None:
        nodelist=G.nodes()

    if not nodelist or len(nodelist)==0:  # empty nodelist, no drawing
        return None 

    try:
        xy=asarray([pos[v] for v in nodelist])
    except KeyError,e:
        raise networkx_v099.NetworkXError('Node %s has no position.'%e)
Ejemplo n.º 20
0
def pastel(colour, weight=2.4):
    """ Convert colour into a nice pastel shade"""
    rgb = asarray(colorConverter.to_rgb(colour))
    # scale colour
    maxc = max(rgb)
    if maxc < 1.0 and maxc > 0:
        # scale colour
        scale = 1.0 / maxc
        rgb = rgb * scale
    # now decrease saturation
    total = asum(rgb)
    slack = 0
    for x in rgb:
        slack += 1.0 - x

    # want to increase weight from total to weight
    # pick x s.t.  slack * x == weight - total
    # x = (weight - total) / slack
    x = (weight - total) / slack

    rgb = [c + (x * (1.0 - c)) for c in rgb]

    return rgb
Ejemplo n.º 21
0
def pastel(colour, weight=2.4):
    """ Convert colour into a nice pastel shade"""
    rgb = asarray(colorConverter.to_rgb(colour))
    # scale colour 
    maxc = max(rgb)
    if maxc < 1.0 and maxc > 0:
        # scale colour
        scale = 1.0 / maxc
        rgb = rgb * scale
    # now decrease saturation
    total = sum(rgb)
    slack = 0
    for x in rgb:
        slack += 1.0 - x

    # want to increase weight from total to weight
    # pick x s.t.  slack * x == weight - total
    # x = (weight - total) / slack
    x = (weight - total) / slack

    rgb = [c + (x * (1.0-c)) for c in rgb]

    return rgb
Ejemplo n.º 22
0
 def points_to_pixels(self, points):
     """
     convert point measures to pixes using dpi and the pixels per
     inch of the display
     """
     return asarray(points)*(PIXELS_PER_INCH/72.0*self.dpi.get()/72.0)
Ejemplo n.º 23
0
def closeto(x,y):
    return abs(asarray(x)-asarray(y))<1e-10
Ejemplo n.º 24
0
def draw_networkx_edges(G,
                        pos,
                        edgelist=None,
                        width=1.0,
                        edge_color='k',
                        style='solid',
                        alpha=1.0,
                        ax=None,
                        **kwds):
    """Draw the edges of the graph G

    This draws only the edges of the graph G.

    pos is a dictionary keyed by vertex with a two-tuple
    of x-y positions as the value.
    See networkx.layout for functions that compute node positions.

    edgelist is an optional list of the edges in G to be drawn.
    If provided, only the edges in edgelist will be drawn. 
    
    See draw_networkx for the list of other optional parameters.

    """
    from matplotlib.pylab import gca, hold, draw_if_interactive
    if ax is None:
        ax = gca()

    if edgelist is None:
        edgelist = G.edges()

    if not edgelist:  # no edges!
        return None

    # set edge positions
    head = []
    tail = []
    for e in edgelist:
        # edge e can be a 2-tuple (Graph) or a 3-tuple (Xgraph)
        u = e[0]
        v = e[1]
        head.append(pos[u])
        tail.append(pos[v])
    edge_pos = asarray(zip(head, tail))

    if not cb.iterable(width):
        lw = (width, )
    else:
        lw = width

    # edge colors specified with floats won't work here
    # since LineCollection doesn't use ScalarMappable.
    # You can use an array of RGBA or text labels
    if not cb.is_string_like(edge_color) \
           and cb.iterable(edge_color) \
           and len(edge_color)==len(edge_pos):
        edge_colors = None
    else:
        edge_colors = (colorConverter.to_rgba(edge_color, alpha), )

    if G.is_directed():
        edge_collection = LineCollection(
            edge_pos,
            colors=edge_colors,
            linewidths=lw,
            antialiaseds=(1, ),
            linestyle=style,
            transOffset=ax.transData,
        )
        edge_collection.set_alpha(alpha)
    else:
        arrows = []
        for src, dst in edge_pos:
            x1, y1 = src
            x2, y2 = dst
            dx = x2 - x1  # x offset
            dy = y2 - y1  # y offset
            arrows.append(Arrow(x1, y1, dx, dy, width=lw).get_verts())
        edge_collection = PolyCollection(
            arrows,
            facecolors=edge_colors,
            antialiaseds=(1, ),
            transOffset=ax.transData,
        )
    # update view
    xx = [x for (x, y) in head + tail]
    yy = [y for (x, y) in head + tail]
    minx = amin(xx)
    maxx = amax(xx)
    miny = amin(yy)
    maxy = amax(yy)
    w = maxx - minx
    h = maxy - miny
    padx, pady = 0.05 * w, 0.05 * h
    corners = (minx - padx, miny - pady), (maxx + padx, maxy + pady)
    ax.update_datalim(corners)
    ax.autoscale_view()

    edge_collection.set_zorder(1)  # edges go behind nodes
    ax.add_collection(edge_collection)

    return edge_collection
Ejemplo n.º 25
0
def draw_networkx_edges(G, pos,
                        edgelist=None,
                        width=1.0,
                        edge_color='k',
                        style='solid',
                        alpha=1.0,
                        edge_cmap=None,
                        edge_vmin=None,
                        edge_vmax=None, 
                        ax=None,
                        arrows=True,
                        node_size=300,       # Added by qrancik
                        **kwds):
    """Draw the edges of the graph G

    This draws only the edges of the graph G.

    pos is a dictionary keyed by vertex with a two-tuple
    of x-y positions as the value.
    See networkx.layout for functions that compute node positions.

    edgelist is an optional list of the edges in G to be drawn.
    If provided, only the edges in edgelist will be drawn. 

    edgecolor can be a list of matplotlib color letters such as 'k' or
    'b' that lists the color of each edge; the list must be ordered in
    the same way as the edge list. Alternatively, this list can contain
    numbers and those number are mapped to a color scale using the color
    map edge_cmap.
    
    For directed graphs, "arrows" (actually just thicker stubs) are drawn
    at the head end.  Arrows can be turned off with keyword arrows=False.

    See draw_networkx for the list of other optional parameters.

    """
    
    if ax is None:
        ax=matplotlib.pylab.gca()

    if edgelist is None:
        edgelist=G.edges()

    if not edgelist or len(edgelist)==0: # no edges!
        return None

    # set edge positions
    edge_pos=asarray([(pos[e[0]],pos[e[1]]) for e in edgelist])

    if not cb.iterable(width):
        lw = (width,)
    else:
        lw = width

    if not cb.is_string_like(edge_color) \
           and cb.iterable(edge_color) \
           and len(edge_color)==len(edge_pos):
        if matplotlib.numerix.alltrue([cb.is_string_like(c) 
                                       for c in edge_color]):
            # (should check ALL elements)
            # list of color letters such as ['k','r','k',...]
            edge_colors = tuple([colorConverter.to_rgba(c,alpha) 
                                 for c in edge_color])
        elif matplotlib.numerix.alltrue([not cb.is_string_like(c) 
                                         for c in edge_color]):
            # numbers (which are going to be mapped with a colormap)
            edge_colors = None
        else:
            raise ValueError('edge_color must consist of either color names or numbers')
    else:
        if len(edge_color)==1:
            edge_colors = ( colorConverter.to_rgba(edge_color, alpha), )
        else:
            raise ValueError('edge_color must be a single color or list of exactly m colors where m is the number or edges')

#    edge_collection = LineCollection(edge_pos,             # Deleted by qrancik
    edge_collection = ArrowedLineCollection(edge_pos,       # Added by qrancik
                                colors       = edge_colors,
                                linewidths   = lw,
                                antialiaseds = (1,),
                                linestyle    = style,     
                                transOffset = ax.transData,             
                                )
    edge_collection.set_alpha(alpha)

    # Added by Satyam
    arrow_collection=None
    if G.is_directed() and arrows:
        edge_collection.add_arrows(math.sqrt(node_size)/1.5) # Found emprically to work well. Maybe more systematic approach needed?
        arrow_colors = ( colorConverter.to_rgba('k', alpha), )
        arrow_collection = LineCollection(edge_pos,       # Added by qrancik
                                colors       = arrow_colors,
                                linewidths   = lw,
                                antialiaseds = (1,),
                                linestyle    = style,     
                                transOffset = ax.transData,             
                                )
        

    # need 0.87.7 or greater for edge colormaps
    mpl_version=matplotlib.__version__
    if mpl_version.endswith('svn'):
        mpl_version=matplotlib.__version__[0:-3]
    if mpl_version.endswith('pre'):
        mpl_version=matplotlib.__version__[0:-3]
    if map(int,mpl_version.split('.'))>=[0,87,7]:
        if edge_colors is None:
            if edge_cmap is not None: assert(isinstance(edge_cmap, Colormap))
            edge_collection.set_array(asarray(edge_color))
            edge_collection.set_cmap(edge_cmap)
            if edge_vmin is not None or edge_vmax is not None:
                edge_collection.set_clim(edge_vmin, edge_vmax)
            else:
                edge_collection.autoscale()
            matplotlib.pylab.sci(edge_collection)


    
    # update view        
    minx = amin(ravel(edge_pos[:,:,0]))
    maxx = amax(ravel(edge_pos[:,:,0]))
    miny = amin(ravel(edge_pos[:,:,1]))
    maxy = amax(ravel(edge_pos[:,:,1]))



    w = maxx-minx
    h = maxy-miny
    padx, pady = 0.05*w, 0.05*h
    corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady)
    ax.update_datalim( corners)
    ax.autoscale_view()

    edge_collection.set_zorder(1) # edges go behind nodes            
    ax.add_collection(edge_collection)
    if arrow_collection:
        arrow_collection.set_zorder(1) # edges go behind nodes            
        ax.add_collection(arrow_collection)

    return edge_collection
Ejemplo n.º 26
0
 def __array__(self, t=None, context=None):
     if t is not None:
         return nx.asarray(self.value).astype(t)
     else:
         return nx.asarray(self.value, 'O')
Ejemplo n.º 27
0
 def __array__(self, t = None, context = None):
   if t is not None:
     return nx.asarray(self.value).astype(t)
   else:
     return nx.asarray(self.value, 'O')
Ejemplo n.º 28
0
def closeto(x, y):
    return abs(asarray(x) - asarray(y)) < 1e-10
Ejemplo n.º 29
0
 def to_rgba(self, x, alpha=1.0):
     # assume normalized rgb, rgba
     x = asarray(x)
     if len(x.shape)>2: return x
     x = self.norm(x)
     return self.cmap(x, alpha)
Ejemplo n.º 30
0
def autocorr(x, lag=1):
    """Returns the autocorrelation x."""
    x = nx.asarray(x)
    mu = nx.mlab.mean(x)
    sigma = nx.mlab.std(x)
    return nx.dot(x[:-lag]-mu, x[lag:]-mu)/(sigma**2.)/(len(x) - lag)
Ejemplo n.º 31
0
def autocorr(x, lag=1):
    """Returns the autocorrelation x."""
    x = nx.asarray(x)
    mu = nx.mlab.mean(x)
    sigma = nx.mlab.std(x)
    return nx.dot(x[:-lag]-mu, x[lag:]-mu)/(sigma**2.)/(len(x) - lag)
Ejemplo n.º 32
0
def draw_networkx_edges(G, pos,
                        edgelist=None,
                        width=1.0,
                        edge_color='k',
                        style='solid',
                        alpha=1.0,
                        edge_cmap=None,
                        edge_vmin=None,
                        edge_vmax=None, 
                        ax=None,
                        arrows=True,
                        **kwds):
    """Draw the edges of the graph G

    This draws only the edges of the graph G.

    pos is a dictionary keyed by vertex with a two-tuple
    of x-y positions as the value.
    See networkx_v099.layout for functions that compute node positions.

    edgelist is an optional list of the edges in G to be drawn.
    If provided, only the edges in edgelist will be drawn. 

    edgecolor can be a list of matplotlib color letters such as 'k' or
    'b' that lists the color of each edge; the list must be ordered in
    the same way as the edge list. Alternatively, this list can contain
    numbers and those number are mapped to a color scale using the color
    map edge_cmap.
    
    For directed graphs, "arrows" (actually just thicker stubs) are drawn
    at the head end.  Arrows can be turned off with keyword arrows=False.

    See draw_networkx_v099 for the list of other optional parameters.

    """
    if ax is None:
        ax=matplotlib.pylab.gca()

    if edgelist is None:
        edgelist=G.edges()

    if not edgelist or len(edgelist)==0: # no edges!
        return None

    # set edge positions
    edge_pos=asarray([(pos[e[0]],pos[e[1]]) for e in edgelist])

    if not cb.iterable(width):
        lw = (width,)
    else:
        lw = width

    if not cb.is_string_like(edge_color) \
           and cb.iterable(edge_color) \
           and len(edge_color)==len(edge_pos):
        if matplotlib.numerix.alltrue([cb.is_string_like(c) 
                                       for c in edge_color]):
            # (should check ALL elements)
            # list of color letters such as ['k','r','k',...]
            edge_colors = tuple([colorConverter.to_rgba(c,alpha) 
                                 for c in edge_color])
        elif matplotlib.numerix.alltrue([not cb.is_string_like(c) 
                                         for c in edge_color]):
            # numbers (which are going to be mapped with a colormap)
            edge_colors = None
        else:
            raise ValueError('edge_color must consist of either color names or numbers')
    else:
        if len(edge_color)==1:
            edge_colors = ( colorConverter.to_rgba(edge_color, alpha), )
        else:
            raise ValueError('edge_color must be a single color or list of exactly m colors where m is the number or edges')

    edge_collection = LineCollection(edge_pos,
                                colors       = edge_colors,
                                linewidths   = lw,
                                antialiaseds = (1,),
                                linestyle    = style,     
                                transOffset = ax.transData,             
                                )
    edge_collection.set_alpha(alpha)

    # need 0.87.7 or greater for edge colormaps
    mpl_version=matplotlib.__version__
    if mpl_version.endswith('svn'):
        mpl_version=matplotlib.__version__[0:-3]
    if mpl_version.endswith('pre'):
        mpl_version=matplotlib.__version__[0:-3]
    if map(int,mpl_version.split('.'))>=[0,87,7]:
        if edge_colors is None:
            if edge_cmap is not None: assert(isinstance(edge_cmap, Colormap))
            edge_collection.set_array(asarray(edge_color))
            edge_collection.set_cmap(edge_cmap)
            if edge_vmin is not None or edge_vmax is not None:
                edge_collection.set_clim(edge_vmin, edge_vmax)
            else:
                edge_collection.autoscale()
            matplotlib.pylab.sci(edge_collection)

#    else:
#        sys.stderr.write(\
#            """matplotlib version >= 0.87.7 required for colormapped edges.
#        (version %s detected)."""%matplotlib.__version__)
#        raise UserWarning(\
#            """matplotlib version >= 0.87.7 required for colormapped edges.
#        (version %s detected)."""%matplotlib.__version__)

    arrow_collection=None

    if G.directed and arrows:

        # a directed graph hack
        # draw thick line segments at head end of edge
        # waiting for someone else to implement arrows that will work 
        arrow_colors = ( colorConverter.to_rgba('k', alpha), )
        a_pos=[]
        p=1.0-0.25 # make head segment 25 percent of edge length
        for src,dst in edge_pos:
            x1,y1=src
            x2,y2=dst
            dx=x2-x1 # x offset
            dy=y2-y1 # y offset
            d=sqrt(float(dx**2+dy**2)) # length of edge
            if d==0: # source and target at same position
                continue
            if dx==0: # vertical edge
                xa=x2
                ya=dy*p+y1
            if dy==0: # horizontal edge
                ya=y2
                xa=dx*p+x1
            else:
                theta=arctan2(dy,dx)
                xa=p*d*cos(theta)+x1
                ya=p*d*sin(theta)+y1
                
            a_pos.append(((xa,ya),(x2,y2)))

        arrow_collection = LineCollection(a_pos,
                                colors       = arrow_colors,
                                linewidths   = [4*ww for ww in lw],
                                antialiaseds = (1,),
                                transOffset = ax.transData,             
                                )
        
    # update view        
    minx = amin(ravel(edge_pos[:,:,0]))
    maxx = amax(ravel(edge_pos[:,:,0]))
    miny = amin(ravel(edge_pos[:,:,1]))
    maxy = amax(ravel(edge_pos[:,:,1]))



    w = maxx-minx
    h = maxy-miny
    padx, pady = 0.05*w, 0.05*h
    corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady)
    ax.update_datalim( corners)
    ax.autoscale_view()

    edge_collection.set_zorder(1) # edges go behind nodes            
    ax.add_collection(edge_collection)
    if arrow_collection:
        arrow_collection.set_zorder(1) # edges go behind nodes            
        ax.add_collection(arrow_collection)


    return edge_collection