Ejemplo n.º 1
0
def a(x1, x2, L):
    d = []
    x1 = int(x1)
    x2 = int(x2)
    for i in range(x1, x2):
        if (i not in date2):
            continue
        d.append(i)
        start1 = datetime.strptime(start, "%Y-%m-%d")
        t1 = str(start1 + timedelta(x1 - datestr2num(start)))[0:10]
        t2 = str(start1 + timedelta(x2 - datestr2num(start)))[0:10]
        ti = str(start1 + timedelta(i - datestr2num(start)))[0:10]
        d.append(
            culDistence(x1, closePrice[t1], x2, closePrice[t2], i,
                        closePrice[ti]))


#    index=d.index(max(d))
    if len(d) == 0:
        return
    d1 = [d[i] for i in range(1, len(d), 2)]  #不包含索引的list
    maxD = max(d1)
    if maxD < L:
        return
    else:
        index = d[d.index(maxD) - 1]
        result.append(index)

        a(x1, index, L)
        a(index, x2, L)
Ejemplo n.º 2
0
    def setUp(self):
        n=1000  # slows down significantly! constraint is percentile  test
        x = sc.randn(n)*100.  # generate dummy data
        self.D = Data(None, None)
        d=np.ones((n, 1, 1))
        self.D.data = d
        self.D.data[:,0,0]=x
        self.D.data = np.ma.array(self.D.data, mask=self.D.data != self.D.data)
        self.D.verbose = True
        self.D.unit = 'myunit'
        self.D.label = 'testlabel'
        self.D.filename = 'testinputfilename.nc'
        self.D.varname = 'testvarname'
        self.D.long_name = 'This is the longname'
        self.D.time = np.arange(n) + pl.datestr2num('2001-01-01')
        self.D.time_str = "days since 0001-01-01 00:00:00"
        self.D.calendar = 'gregorian'
        self.D.oldtime=False

        # generate dummy Model object
        data_dir = './test/'
        varmethods = {'albedo':'get_albedo()', 'sis': 'get_sis()'}
        self.model = models.Model(data_dir, varmethods, name='testmodel', intervals='monthly')

        sis = self.D.copy()
        sis.mulc(5., copy=False)
        sis.label='sisdummy'

        alb = self.D.copy()
        alb.label='albedodummy'

        # add some dummy data variable
        self.model.variables = {'albedo':alb, 'sis':sis}
Ejemplo n.º 3
0
    def setUp(self):
        self.map_plot = mapping.MapPlotGeneric()

        # data for testing
        n=1000  # slows down significantly! constraint is percentile  test
        x = sc.randn(n)*100.  # generate dummy data
        self.D = Data(None, None)
        ny=10
        nx=20
        d=np.ones((n, ny, nx))
        self.D.data = d
        for i in xrange(ny):
            for j in xrange(nx):
                self.D.data[:, i, j] = x[:]
        self.D.data = np.ma.array(self.D.data, mask=self.D.data != self.D.data)
        self.D.verbose = True
        self.D.unit = 'myunit'
        self.D.label = 'testlabel'
        self.D.filename = 'testinputfilename.nc'
        self.D.varname = 'testvarname'
        self.D.long_name = 'This is the longname'
        self.D.time = np.arange(n) + pl.datestr2num('2001-01-01')
        self.D.time_str = "days since 0001-01-01 00:00:00"
        self.D.calendar = 'gregorian'
        self.D.cell_area = np.ones((ny, nx))
        self.D.lon = np.random.random((ny,nx))*10.
        self.D.lat = np.random.random((ny,nx))*20.

        self._tmpdir = tempfile.mkdtemp()
Ejemplo n.º 4
0
def get_stock_plot(code, start, end, session_id=''):
    # get history
    res_table = ts.get_hist_data(code, start, end)
    sh_res_table = ts.get_hist_data('sh', start, end)
    print(res_table)
    # string to date
    print(res_table.index.values)
    x_date = [datestr2num(i) for i in res_table.index.values]
    # draw
    fig = plt.figure(figsize=(10, 5))
    # matplotlib doesn't support chinese
    plt.title(u"percentage - date")
    plt.xlabel(u"date")
    plt.ylabel(u"percentage")
    plt.plot_date(x_date,
                  res_table['p_change'],
                  '-',
                  label="change percentage")
    plt.plot_date(x_date,
                  sh_res_table['p_change'],
                  '-',
                  label="change percentage")
    # plt.legend()
    plt.grid(True)
    # fig.savefig('test.png', format='png')
    # plt.show()
    sio = BytesIO()
    fig.savefig(sio, format='png')
    data = base64.encodebytes(sio.getvalue()).decode()
    return data
Ejemplo n.º 5
0
def fun(x1, x2, L):
    global result
    result = []
    a(x1, x2, L)

    result = [date2[0]] + sorted(result) + [date2[-1]]
    # 画图部分
    start1 = datetime.strptime(start, "%Y-%m-%d")
    profitRate = 1
    for i in range(0, len(result) - 1):
        ii = str(start1 +
                 timedelta(result[i] - datestr2num(start)))[0:10]  #数字转化为日期
        ii1 = str(start1 + timedelta(result[i + 1] - datestr2num(start)))[0:10]
        p0 = closePrice[ii]
        p1 = closePrice[ii1]
        plt.plot_date([result[i], result[i + 1]], [p0, p1], 'r-')
        if p1 > p0:
            profitRate *= 1 + ((1 - Fee) * p1 -
                               (1 + Fee) * p0) / ((1 + Fee) * p0)
    print(profitRate)
Ejemplo n.º 6
0
    def setUp(self):
        #init Data object for testing
        n=4 #slows down significantly! constraint is percentile  test
        x = sc.randn(n)*100. #generate dummy data
        self.D = Data(None,None)
        d=np.ones((n,1,2))
        self.D.data = d
        self.D.data[:,0,0]=x
        self.D.data = np.ma.array(self.D.data,mask=self.D.data != self.D.data)
        self.D.verbose = True
        self.D.unit = 'myunit'

        self.D.time = np.arange(n) + pl.datestr2num('2001-01-01') - 1
Ejemplo n.º 7
0
def fun(x1, x2, L):
    global result
    result = []
    a(x1, x2, L)
    #    fileHeader = ["start", "end","duration","slope"]
    datacsv = open("data.csv", "w", newline="")
    csvwriter = csv.writer(datacsv, dialect=("excel"))
    result = [date2[0]] + sorted(result) + [date2[-1]]
    # 画图部分
    start1 = datetime.strptime(start, "%Y-%m-%d")
    for i in range(0, len(result) - 1):
        ii = str(start1 +
                 timedelta(result[i] - datestr2num(start)))[0:10]  #数字转化为日期

        ii1 = str(start1 + timedelta(result[i + 1] - datestr2num(start)))[0:10]
        p0 = closePrice[ii]
        p1 = closePrice[ii1]
        plt.plot_date([result[i], result[i + 1]], [p0, p1], 'r-')
        #保存为csv格式
        csvwriter.writerow([
            ii, ii1,
            date2.index(result[i + 1]) - date2.index(result[i]),
            (p1 - p0) / (result[i + 1] - result[i])
        ])
Ejemplo n.º 8
0
def sort_MMSI(traj):
    ##############筛选特定海域的,以及满足各种特定限制范围的正常数据####################
    traj = traj[(traj['YCoord'] <= 43.2) &
                (traj['YCoord'] >= 29.7)]  #海域范围北纬29.7-43.2之间
    traj = traj[(traj['STATUS'] <= 8)]  #正常航行或者停泊状态
    traj = traj[(traj['HEADING'] < 360)]  #船头朝向范围[0,360)
    traj = traj[(traj['SOG'] <= 50)]  #速度小于50节
    traj = traj[~((traj['SOG'] == 0) &
                  (traj['STATUS'] == 0))]  #船速为0,但是状态却为航行的错误数据
    ###################按照MMSI和时间顺序,排列出每条轨迹############################
    a = traj['BASEDATETIME']
    traj['BASEDATETIME'] = datestr2num(a)
    traj = traj.sort_values(by=['MMSI', 'BASEDATETIME'])
    traj = traj.reset_index(drop=True)

    return traj
Ejemplo n.º 9
0
def generate_monthly_timeseries(t, sday='01'):
    """
    generate a vector monthly timeseries

    t: time (numeric)
    """

    tn = []
    d = pl.num2date(t)
    for i in range(len(t)):
        y = str(d[i].year).zfill(4)
        m = str(d[i].month).zfill(2)
        s = y + '-' + m + '-' + sday

        tn.append(pl.datestr2num(s))

    return tn
Ejemplo n.º 10
0
def generate_monthly_timeseries(t, sday='01'):
    """
    generate a vector monthly timeseries

    t: time (numeric)
    """

    tn = []
    d = pl.num2date(t)
    for i in range(len(t)):
        y = str(d[i].year).zfill(4)
        m = str(d[i].month).zfill(2)
        s = y + '-' + m + '-' + sday

        tn.append(pl.datestr2num(s))

    return tn
Ejemplo n.º 11
0
 def setUp(self):
     # init Data object for testing
     n=100  # slows down significantly! constraint is percentile  test
     x = sc.randn(n)*100.  # generate dummy data
     self.D = Data(None, None)
     d=np.ones((n, 1, 1))
     self.D.data = d
     self.D.data[:,0,0]=x
     self.D.data = np.ma.array(self.D.data, mask=self.D.data != self.D.data)
     self.D.verbose = True
     self.D.unit = 'myunit'
     self.D.label = 'testlabel'
     self.D.filename = 'testinputfilename.nc'
     self.D.varname = 'testvarname'
     self.D.long_name = 'This is the longname'
     self.D.time = np.arange(n) + pl.datestr2num('2001-01-01') - 1
     self.D.time_str = "days since 0001-01-01 00:00:00"
     self.D.calendar = 'gregorian'
     self.D.cell_area = np.ones_like(self.D.data[0,:,:])
Ejemplo n.º 12
0
 def setUp(self):
     # init Data object for testing
     n = 100  # slows down significantly! constraint is percentile  test
     x = sc.randn(n) * 100.  # generate dummy data
     self.D = Data(None, None)
     d = np.ones((n, 1, 1))
     self.D.data = d
     self.D.data[:, 0, 0] = x
     self.D.data = np.ma.array(self.D.data, mask=self.D.data != self.D.data)
     self.D.verbose = True
     self.D.unit = 'myunit'
     self.D.label = 'testlabel'
     self.D.filename = 'testinputfilename.nc'
     self.D.varname = 'testvarname'
     self.D.long_name = 'This is the longname'
     self.D.time = np.arange(n) + pl.datestr2num('2001-01-01') - 1
     self.D.time_str = "days since 0001-01-01 00:00:00"
     self.D.calendar = 'gregorian'
     self.D.cell_area = np.ones_like(self.D.data[0, :, :])
Ejemplo n.º 13
0
def mainPieceWise(L, path):  #分段主函数
    files = os.listdir(path)  #得到文件夹下的所有文件名称
    for code in files:  #遍历文件夹
        closePrice = []  #收盘价
        date = []  #字符串日期
        filePath = path + "/" + code + "/" + code + ".csv"  #csv文件名
        with open(filePath) as f:
            f_csv = csv.reader(f)
            headers = next(f_csv)  # 略过第一行列名
            for row in f_csv:
                closePrice.append(row[3])
                date.append(row[0])
        os.chdir(path + "/" + code)  #更改当前文件夹,进行文件的保存
        closePrice = [float(i) for i in closePrice][::-1]
        date = [str(i)[:10] for i in date][::-1]  #字符串日期
        dateToNum = [datestr2num(i) for i in date]  #将日期转为数字进行坐标表示
        #画原始数据图
        plt.gcf().set_size_inches(12, 4)
        plt.plot_date(dateToNum, closePrice, 'b-')
        #调用线性分段函数
        pieceWise(dateToNum, L, closePrice, code)
Ejemplo n.º 14
0
def get_bond_stocks_pe_infos():
    addr = host_address + '/stock/get_stocks_bonds_pe'
    r = requests.get(addr)
    if r.status_code == 200:
        result = json.loads(r.text)
        pe_history = json.loads(result['pe_history'])
        data = pd.DataFrame(pe_history)

        data['bond_yield'] = 100 / data['bond_pe']
        data['stock_yield'] = 100 / data['stocks_pe']

        x = range(len(data))
        x_date = [datestr2num(i) for i in data['trade_date']]
        plt.style.use('ggplot')
        plt.figure(figsize=(14, 4))
        plt.title("10年期国债收益率与全市场股票收益率(%)")
        plt.xticks(rotation=45)
        plt.ylabel("收益率")
        plt.plot_date(x_date, data['bond_yield'], '-', label="10年期国债收益率")
        plt.plot_date(x_date, data['stock_yield'], '-', label="全市场股票收益率")
        plt.legend()
        plt.grid(True)

        pic_path = sys.path[0] + '\\bond_stocks_yield.png'
        if os.path.exists(pic_path):
            os.remove(pic_path)
            print('删除历史文件bond_stocks_yield.png')
        print('生成图片:' + pic_path)
        plt.savefig(pic_path)  # 保存图片

        with open(pic_path, "rb") as f:
            base64_data = base64.b64encode(f.read())
            global pic_base64
            pic_base64 = pic_base64 + str(base64_data)[2:-1]
            print('将图片转化为base64')
            print(pic_base64)
    else:
        raise Exception('更新每日数据接口【get_bond_stocks_pe_infos】调用失败')
Ejemplo n.º 15
0
    def test_gleckler_index(self):
        """
        test Reichler index/Gleckler plot
        """

        # generate sample data
        # sample data
        tmp = np.zeros((5, 3, 1))
        tmp[:, 0, 0] = np.ones(5) * 1.
        tmp[:, 1, 0] = np.ones(5) * 2.
        tmp[:, 2, 0] = np.ones(5) * 5.

        # The data is like ...
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |

        x = self.D.copy()
        x._temporal_subsetting(0, 4)

        x.data = np.ma.array(tmp, mask=tmp != tmp)
        x.std = np.ones(x.data.shape)
        x.time[0] = pl.datestr2num('2000-02-15')
        x.time[1] = pl.datestr2num('2000-03-15')
        x.time[2] = pl.datestr2num('2000-04-15')
        x.time[3] = pl.datestr2num('2000-05-15')
        x.time[4] = pl.datestr2num('2000-06-15')

        y = self.D.copy()
        y._temporal_subsetting(0, 4)
        tmp = np.ones(x.data.shape)  # sample data 2
        y.data = np.ma.array(tmp, mask=tmp != tmp)
        y.time[0] = pl.datestr2num('2000-02-15')
        y.time[1] = pl.datestr2num('2000-03-15')
        y.time[2] = pl.datestr2num('2000-04-15')
        y.time[3] = pl.datestr2num('2000-05-15')
        y.time[4] = pl.datestr2num('2000-06-15')

        # Case 1: same area weights
        # cell area
        tmp = np.ones((3, 1))
        x.cell_area = tmp * 1.

        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #===================
        #| 0   | 5   | 5*4**2=5*16. = 80 |
        #==> E2 = sqrt(85./(15.))
        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b', time_weighting=False)

        wt = np.ones(5) / 5.
        ref = np.sqrt(((85. / 15.) * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b')

        wt = np.asarray([29., 31., 30., 31., 30.])
        wt = wt / wt.sum()
        ref = np.sqrt(((85. / 15.) * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        # Case 2: Different area weights
        # cell area
        tmp = np.ones((3, 1))
        tmp[1, 0] = 2.
        x.cell_area = tmp * 1.

        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #--------------------------
        # w = 0.25 w = 0.5  w=0.25|
        #--------------------------

        # 0.25*0 + 0.5 * 1 + 0.25 * 16 = 0 + 0.5 + 4 = 4.5
        # the mean of that is 4.5 for each timestep
        # mean because the overall weights are calculated as such that
        # they give a total weight if 1

        #  diagnostic
        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b', time_weighting=False)

        wt = np.ones(5) / 5.
        ref = np.sqrt((4.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        wt = np.asarray([29., 31., 30., 31., 30.])
        wt = wt / wt.sum()
        ref = np.sqrt((4.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        # Case 3: use different std
        x.std = np.ones(x.data.shape)
        x.std[:, 2, 0] = 0.5

        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #--------------------------------
        # w = 0.25    w = 0.5    w=0.25|
        #    0    +   0.5   +  0.25*32 = 0.5 + 8 = 8.5

        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b', time_weighting=False)

        wt = np.ones(5) / 5.
        ref = np.sqrt((8.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        wt = np.asarray([29., 31., 30., 31., 30.])
        wt = wt / wt.sum()
        ref = np.sqrt((8.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error
Ejemplo n.º 16
0
    DM = '000002'
    global csvInput
    csvInput = []

    sns.set_style("whitegrid")
    end = datetime.today()  #开始时间结束时间,选取最近一年的数据
    start = datetime(end.year, end.month - 3, end.day)
    end = str(end)[0:10]
    start = str(start)[0:10]

    getData = ts.get_hist_data(DM, start, end)
    closePrice = getData.close  #收盘价
    closePrice = closePrice[::-1]  #按日期从低到高
    date1 = getData.index  #日期
    date1 = date1[::-1]  #按日期从低到高
    date2 = [datestr2num(i) for i in date1]  #将日期转为数字进行坐标表示

    plt.gcf().set_size_inches(12, 4)
    plt.plot_date(date2, closePrice, 'b-')

    #买卖的的判断画图
    chiyou = []  #预计持有日期
    uptrend = []  #预计上升日期
    downtrend = []  #预计下跌日期
    chiyouPrice = []  #持有价钱
    uptrendPrice = []  #上升价钱
    downtrendPrice = []  #下跌价钱
    for i in date1:
        cul, count1 = culKDJ.cul_KDJ(DM, i, 9)
        count += count1
        if cul == 0:
Ejemplo n.º 17
0
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
import matplotlib.mlab as mlab
from scipy.interpolate import UnivariateSpline as spline
from glob import glob

files = sorted(glob("grand-island-test-wenzel-*.csv"))

# pumping start and end times
t0 = pylab.datestr2num('07/29/1931 06:05:00')
t1 = pylab.datestr2num('07/31/1931 06:04:00')

print 'test length in seconds:', (t1 - t0) * 1440 * 60

tlen = (t1 - t0) * 1440

# column 0: date
# column 1: time
# column 2: drawdown (ft)

individualplots = True
computesplinederiv = True
drawdowncheck = True
mapcheckplot = True
saveMetricDecimalData = True

# apply uniform min/max derivatives to all data
ydmin, ydmax = (-0.2, 1.0)

if drawdowncheck:
Ejemplo n.º 18
0
    def test_gleckler_index(self):
        """
        test Reichler index/Gleckler plot
        """

        # generate sample data
        # sample data
        tmp = np.zeros((5, 3, 1))
        tmp[:,0,0] = np.ones(5)*1.
        tmp[:,1,0] = np.ones(5)*2.
        tmp[:,2,0] = np.ones(5)*5.

        # The data is like ...
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |
        #| 1 | 2 | 5 |

        x = self.D.copy()
        x._temporal_subsetting(0, 4)

        x.data = np.ma.array(tmp, mask=tmp!=tmp)
        x.std = np.ones(x.data.shape)
        x.time[0] = pl.datestr2num('2000-02-15')
        x.time[1] = pl.datestr2num('2000-03-15')
        x.time[2] = pl.datestr2num('2000-04-15')
        x.time[3] = pl.datestr2num('2000-05-15')
        x.time[4] = pl.datestr2num('2000-06-15')

        y = self.D.copy()
        y._temporal_subsetting(0, 4)
        tmp = np.ones(x.data.shape)  # sample data 2
        y.data = np.ma.array(tmp, mask=tmp!=tmp)
        y.time[0] = pl.datestr2num('2000-02-15')
        y.time[1] = pl.datestr2num('2000-03-15')
        y.time[2] = pl.datestr2num('2000-04-15')
        y.time[3] = pl.datestr2num('2000-05-15')
        y.time[4] = pl.datestr2num('2000-06-15')

        # Case 1: same area weights
        # cell area
        tmp = np.ones((3, 1))
        x.cell_area = tmp*1.

        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #| 1-1 | 2-1 | 5-1 |
        #===================
        #| 0   | 5   | 5*4**2=5*16. = 80 |
        #==> E2 = sqrt(85./(15.))
        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b', time_weighting=False)

        wt = np.ones(5) / 5.
        ref = np.sqrt(((85./15.) * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b')

        wt = np.asarray([29., 31., 30., 31., 30.])
        wt = wt / wt.sum()
        ref = np.sqrt(((85./15.) * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error



        # Case 2: Different area weights
        # cell area
        tmp = np.ones((3, 1))
        tmp[1, 0] = 2.
        x.cell_area = tmp*1.

        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #| 1-1=0 | 2-1=1 | 5-1=16 |
        #--------------------------
        # w = 0.25 w = 0.5  w=0.25|
        #--------------------------

        # 0.25*0 + 0.5 * 1 + 0.25 * 16 = 0 + 0.5 + 4 = 4.5
        # the mean of that is 4.5 for each timestep
        # mean because the overall weights are calculated as such that
        # they give a total weight if 1

        #  diagnostic
        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b', time_weighting=False)

        wt = np.ones(5) / 5.
        ref = np.sqrt((4.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        wt = np.asarray([29., 31., 30., 31., 30.])
        wt = wt / wt.sum()
        ref = np.sqrt((4.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        # Case 3: use different std
        x.std = np.ones(x.data.shape)
        x.std[:, 2, 0] = 0.5

        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #| 1-1=0 | 2-1=1  | 5-1=16 / 0.5 |
        #--------------------------------
        # w = 0.25    w = 0.5    w=0.25|
        #    0    +   0.5   +  0.25*32 = 0.5 + 8 = 8.5

        D = GlecklerPlot()
        r = D.calc_index(x, y, 'a', 'b', time_weighting=False)

        wt = np.ones(5) / 5.
        ref = np.sqrt((8.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error

        wt = np.asarray([29., 31., 30., 31., 30.])
        wt = wt / wt.sum()
        ref = np.sqrt((8.5 * wt).sum())
        t = np.abs(1. - r / ref)
        self.assertLess(t, 0.000001)  # relative error
Ejemplo n.º 19
0
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
import matplotlib.mlab as mlab
from scipy.interpolate import UnivariateSpline as spline
from glob import glob

files = sorted(glob("grand-island-test-wenzel-*.csv"))

# pumping start and end times
t0 = pylab.datestr2num("07/29/1931 06:05:00")
t1 = pylab.datestr2num("07/31/1931 06:04:00")

print "test length in seconds:", (t1 - t0) * 1440 * 60

tlen = (t1 - t0) * 1440

# column 0: date
# column 1: time
# column 2: drawdown (ft)

individualplots = True
computesplinederiv = True
drawdowncheck = True
mapcheckplot = True
saveMetricDecimalData = True

# apply uniform min/max derivatives to all data
ydmin, ydmax = (-0.2, 1.0)

if drawdowncheck:
Ejemplo n.º 20
0
def main():
    funds = [
        # # 股票基金
        {"code": "004851", "name": "广发医疗保健股票"},
        {"code": "000913", "name": "农银医疗保健股票"},
        {"code": "000960", "name": "招商医药健康产业股票"},

        # # 债券基金
        {"code": "005461", "name": "南方希元转债"},
        {"code": "000080", "name": "天治可转债增强债券A"},
        {"code": "004993", "name": "中欧可转债债券A"},
        #
        # # 混合基金
        {"code": "050026", "name": "博时医疗保健行业混合A"},
        {"code": "003096", "name": "中欧医疗健康混合C"},
        {"code": "005689", "name": "中银医疗保健混合"},
        #
        # # 大盘指数基金
        {"code": "070039", "name": "嘉实中证500ETF联接C"},
        {"code": "002987", "name": "广发沪深300ETF联接C"},

        # # 行业指数基金
        {"code": "161035", "name": "富国中证医药主题指数增强"},
        {"code": "161122", "name": "易方达生物分级"},
        {"code": "161726", "name": "招商国证生物医药指数分级"},
    ]

    if USE_ALL_FUNDS:
        print("拉取全部基金列表")
        funds = []
        allFunds = AllFundDownloader()
        for fund in allFunds.funds:
            funds.append({
                "code": fund.code,
                "name": fund.name,
            })

    # 下载每日净值图
    if FETCH_FUNDS_GUZHI:
        guzhi_images_dir = "guzhi_images"
        print("下载每日净值图到{}".format(guzhi_images_dir))
        # 创建结果目录
        shutil.rmtree(guzhi_images_dir, True)
        pathlib.Path(guzhi_images_dir).mkdir(parents=True, exist_ok=True)
        for idx, fund in enumerate(funds):
            chartDownloader = FundGuzhiChartDownloader(fund["code"], fund["name"], guzhi_images_dir)
            res = ""
            if chartDownloader.save_to_local():
                res = "成功"
            else:
                res = "失败"
            print("[{}/{}] 下载{}-{}成功, url={}".format(idx + 1, len(funds), chartDownloader.code, chartDownloader.name, chartDownloader.url))

        # 合并为一个图
        print("合并为单个图")
        images_to_merge = []
        for filename in os.listdir(guzhi_images_dir):
            filepath = os.path.join(guzhi_images_dir, filename)
            if filename.endswith(".png"):
                images_to_merge.append(filepath)

        merge_images_vertically_and_display(images_to_merge)

    peroids = [
        7,
        14,
        30,
    ]

    now = datetime.datetime.now().strftime("%Y-%m-%d")
    lastMonth = (datetime.datetime.now() - datetime.timedelta(days=int(365 / 12 * 1))).strftime("%Y-%m-%d")
    lastTwoMonth = (datetime.datetime.now() - datetime.timedelta(days=int(365 / 12 * 2))).strftime("%Y-%m-%d")
    lastSeason = (datetime.datetime.now() - datetime.timedelta(days=int(365 / 12 * 3))).strftime("%Y-%m-%d")
    lastFourMonth = (datetime.datetime.now() - datetime.timedelta(days=int(365 / 12 * 4))).strftime("%Y-%m-%d")
    lastFiveMonth = (datetime.datetime.now() - datetime.timedelta(days=int(365 / 12 * 5))).strftime("%Y-%m-%d")
    lastHalfYear = (datetime.datetime.now() - datetime.timedelta(days=int(365 / 12 * 6))).strftime("%Y-%m-%d")
    lastYear = (datetime.datetime.now() - datetime.timedelta(days=int(365))).strftime("%Y-%m-%d")
    times = [
        {"start": "2016-01-01", "end": "2017-01-01"},  # 2016年
        {"start": "2017-01-01", "end": "2018-01-01"},  # 2017年
        {"start": "2018-01-01", "end": "2019-01-01"},  # 2018年
        {"start": "2016-01-01", "end": now},  # 2016年至今
        {"start": "2017-01-01", "end": now},  # 2017年至今
        {"start": "2018-01-01", "end": now},  # 2018年至今
        {"start": "2019-01-01", "end": now},  # 2019年至今
        {"start": lastMonth, "end": now},  # 上个月
        {"start": lastTwoMonth, "end": now},  # 前两个月
        {"start": lastSeason, "end": now},  # 上个季度
        {"start": lastFourMonth, "end": now},  # 前四个月
        {"start": lastFiveMonth, "end": now},  # 前五个月
        {"start": lastHalfYear, "end": now},  # 前半年
        {"start": lastYear, "end": now},  # 前年
    ]

    fund_deal_map = {}
    for idx, fund in enumerate(funds):
        #  获取基金数据
        print("[%d/%d] Loading data for %s" % (idx + 1, len(funds), fund["name"]))
        fund_deal_map[fund["name"]] = BackTrackingDeal(fund["code"], fund["name"], DingtouStrategy(days=1))

    if DRAW_PLOTS:
        # 绘走势图
        # plt.style.use('ggplot')
        plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
        plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
        # plt.title(u'基金走势图')
        fig, axs = plt.subplots(len(fund_deal_map), figsize=(10, 5 * len(fund_deal_map)))
        idx = 0
        start_dingtou_time = "2019-10-15"
        for name, fund in fund_deal_map.items():
            data = fund.get_range_data(start_dingtou_time, now)
            # data = fund.fund.data
            x = range(len(data))
            x_date = [datestr2num(i.time) for i in data]
            y_data = [i.unit_net_value for i in data]

            fund.strategy = DingtouStrategy(days=30)
            profit = fund.run(start_dingtou_time, now)

            total_change_rate = (data[-1].unit_net_value - data[0].unit_net_value) / data[0].unit_net_value * 100
            axs[idx].plot_date(x_date, y_data, '-', label=u"%s-%s-[%f%%]-[%s]" % (fund.fund_code, fund.fund_name, total_change_rate, profit["profit_rate"]))
            for day in get_dingtou_days():
                axs[idx].axvline(datestr2num(day), ymin=0.0, ymax=1.0, color="gray")
            axs[idx].legend()
            axs[idx].grid(True)
            idx += 1
        plt.xlabel(u'时间')
        plt.ylabel(u'单位净值')
        # plt.show()
        plt.savefig("profit.png")
        webbrowser.get("C:/Program Files (x86)/Google/Chrome/Application/chrome.exe %s").open("profit.png")


    # 清空结果目录
    shutil.rmtree("result")
    print("output directory cleared")

    for t in times:
        start = t["start"]
        end = t["end"]
        duration = (datetime.datetime.strptime(end, "%Y-%m-%d") - datetime.datetime.strptime(start, "%Y-%m-%d")).days
        file_name = "result/%s_%s.csv" % (start, end)
        if not os.path.exists(os.path.dirname(file_name)):
            os.makedirs(os.path.dirname(file_name))

        summary = {}
        for peroid in peroids:
            summary[peroid] = {
                "fund_name": "平均",
                "duration": duration,
                "strategy": "%d天" % peroid,
                "invest_money": 0.001,
                "profit": 0.0,
                "profit_rate": "0%",
                "annualized_profit_rate": "0%",
            }

        outputs = []
        for fund in funds:
            fund_deal = fund_deal_map[fund["name"]]
            for peroid in peroids:
                # 尝试不同策略
                strategy = DingtouStrategy(days=peroid)
                fund_deal.strategy = strategy
                profit = fund_deal.run(start, end)
                if len(profit) != 0:
                    outputs.append({
                        "fund_name": fund["name"],
                        "duration": duration,
                        "strategy": strategy.name(),
                        "invest_money": profit["invest_money"],
                        "profit": profit["profit"],
                        "profit_rate": profit["profit_rate"],
                        "annualized_profit_rate": profit["annualized_profit_rate"],
                    })

                    # show status
                    line = "%s,%s天,%s,%s,%s,%s,%s" % (
                        fund["name"],
                        duration,
                        strategy.name(),
                        profit["invest_money"],
                        profit["profit"],
                        profit["profit_rate"],
                        profit["annualized_profit_rate"])
                    print(line)

                    summary[peroid]["invest_money"] += profit["invest_money"]
                    summary[peroid]["profit"] += profit["profit"]

        outputs.sort(key=lambda x: x["profit"], reverse=True)

        for k, v in summary.items():
            v["profit_rate"] = "%.4f%%" % (100 * v["profit"] / v["invest_money"])
            v["annualized_profit_rate"] = "%.4f%%" % (100 * v["profit"] / v["invest_money"] * 365 / duration)
            outputs.append(v)

        with open(file_name, "w+") as ouput_file:
            print("名称,时长,定投周期,总投入,总盈利,总盈利率,年化利率", file=ouput_file)

            for output in outputs:
                line = "%s,%s天,%s,%s,%s,%s,%s" % (
                    output["fund_name"],
                    output["duration"],
                    output["strategy"],
                    output["invest_money"],
                    output["profit"],
                    output["profit_rate"],
                    output["annualized_profit_rate"])
                print(line, file=ouput_file)
Ejemplo n.º 21
0
    return positions


#%%

positions = trading()

strategy_positions = pd.DataFrame(positions)
return_strategy = (strategy_positions / strategy_positions.shift()) - 1
return_strategy = return_strategy.cumsum()

hsa_closeIndex = pd.DataFrame(hsa.closeIndex)
return_hsa = (hsa_closeIndex / hsa_closeIndex.shift()) - 1
return_hsa = return_hsa.cumsum()

matplotlib.use('qt4agg')
myfont = FontProperties(fname='C:\Windows\Fonts\simhei.ttf')
matplotlib.rcParams['axes.unicode_minus'] = False
plt.figure(figsize=(10, 5))
plt.title(u"累计收益率", fontproperties=myfont)
x_date = [datestr2num(i) for i in hsa.tradeDate]
plt.plot_date(x_date, return_hsa, '-')
plt.plot_date(x_date, return_strategy, '-', color='r')
plt.legend(['恒生指数', '策略累计收益率'], prop=myfont)

#date = pd.to_datetime(hsa.tradeDate)
#hsa_hist = pd.DataFrame({'closeIndex':hsa.closeIndex},index=hsa.tradeDate)
#plt.plot(hsa_hist)
#plt.show()