Ejemplo n.º 1
0
    def plotmesh(self, **how):
        """ Draw a plot of the mesh.

        Inner edges in blue lines. Boundary edges in magenta lines. Centers as
        circles. Vertices as squares. x_sigma as x. nKs as arrows.
        """

        ax = plt.gca()
        ax.set_xlim(
            (1.1 * self.mx - 0.1 * self.Mx, -0.1 * self.mx + 1.1 * self.Mx))
        ax.set_ylim(
            (1.1 * self.my - 0.1 * self.My, -0.1 * self.my + 1.1 * self.My))
        ax.set_aspect('equal')
        s_i = self.vert[self.inner]
        s_b = self.vert[self.bnd]
        X_i = np.stack((s_i[0, :, 0], s_i[1, :, 0]))
        Y_i = np.stack((s_i[0, :, 1], s_i[1, :, 1]))
        X_b = np.stack((s_b[0, :, 0], s_b[1, :, 0]))
        Y_b = np.stack((s_b[0, :, 1], s_b[1, :, 1]))
        plt.plot(X_i, Y_i, '-b')
        plt.plot(X_b, Y_b, '-m')
        plt.plot(self.vert[:, 0], self.vert[:, 1], 's', **how)
        plt.plot(self.centres[:, 0], self.centres[:, 1], 'go', **how)
        plt.plot(self.xs_b[:, 0], self.xs_b[:, 1], 'rx', **how)
        plt.plot(self.xs_i[:, 0], self.xs_i[:, 1], 'rx', **how)
        plt.quiver(self.xs_i[:, 0], self.xs_i[:, 1], self.nKs_i[:, 0],
                   self.nKs_i[:, 1])
        plt.quiver(self.xs_b[:, 0], self.xs_b[:, 1], self.nKs_b[:, 0],
                   self.nKs_b[:, 1])
Ejemplo n.º 2
0
def main():
    F, I = ag.io.load_example('two-faces')

    t1 = time()
    imdef, info = ag.stats.image_deformation(F, I, penalty=0.1, rho=2.0, last_level=3, tol=0.00001, maxiter=100, \
                                          start_level=1, wavelet='db8', debug_plot=False)
    t2 = time()
    Fdef = imdef.deform(F)

    print "Time:", t2 - t1
    print "Cost:", info['cost']

    x, y = imdef.meshgrid()
    Ux, Uy = imdef.deform_map(x, y)
    for i in range(Ux.shape[0]):
        for j in range(Ux.shape[1]):
            print Ux[i, j], Uy[i, j]

    print 'mins', Ux.min(), Uy.min()
    print 'maxs', Ux.max(), Uy.max()

    import matplotlib.pylab as plt
    plt.quiver(x, y, Ux, Uy)  #, Ux, Uy)
    plt.show()

    PLOT = False
    if PLOT:
        import matplotlib.pylab as plt
        ag.plot.deformation(F, I, imdef)
Ejemplo n.º 3
0
def main():
    F, I = ag.io.load_example('two-faces')

    t1 = time()
    imdef, info = ag.stats.image_deformation(F, I, penalty=0.1, rho=2.0, last_level=3, tol=0.00001, maxiter=100, \
                                          start_level=1, wavelet='db8', debug_plot=False)
    t2 = time()
    Fdef = imdef.deform(F)
    
    print "Time:", t2-t1
    print "Cost:", info['cost']

    x, y = imdef.meshgrid() 
    Ux, Uy = imdef.deform_map(x, y)
    for i in range(Ux.shape[0]):
        for j in range(Ux.shape[1]):
            print Ux[i,j], Uy[i,j]

    print 'mins', Ux.min(), Uy.min()
    print 'maxs', Ux.max(), Uy.max()

    import matplotlib.pylab as plt
    plt.quiver(x, y, Ux, Uy)#, Ux, Uy)
    plt.show()

    PLOT = False 
    if PLOT:
        import matplotlib.pylab as plt
        ag.plot.deformation(F, I, imdef)
    def plot_electric_field(self,sp=10,scales = 500000,cont_scale=90,savefigs = False):

        fig = plt.figure(figsize=(7.0, 7.0))
        xplot = self.x*1e6
        yplot = self.y*1e6
        X,Y = np.meshgrid(xplot,yplot)
        try:
            plt.contourf(X,Y,self.mode_field,cont_scale)
        except AttributeError:
             raise NotImplementedError("interpolate before plotting")

        plt.quiver(X[::sp,::sp], Y[::sp,::sp], np.real(self.E[::sp,::sp,0]), np.real(self.E[::sp,::sp,1]),scale = scales,headlength=7)
        plt.xlabel(r'$x(\mu m)$')
        plt.ylabel(r'$y(\mu m)$')
        #plt.title(r'mode$=$'+str(self.mode)+', '+'  $n_{eff}=$'+str(self.neff.real)+str(self.neff.imag)+'j')
        if savefigs == True:    
            plt.savefig('mode'+str(self.mode)+'.eps',bbox_inches ='tight')
        
            D = {}
            D['X'] = X
            D['Y'] = Y
            D['Z'] = self.mode_field
            D['u'] = np.real(self.E[::sp,::sp,0])
            D['v'] = np.real(self.E[::sp,::sp,1])
            D['scale'] = scales
            D['cont_scale'] = 90
            D['sp'] = sp
            savemat('mode'+str(self.mode)+'.mat',D)
        return None
Ejemplo n.º 5
0
    def plot_field(self,x,y,u=None,v=None,F=None,contour=False,outdir=None,plot='quiver',figname='_field',format='eps'):
        outdir = self.set_dir(outdir)
        p = 64
        if F is None: F=self.calc_F(u,v)

        plt.close('all')
        plt.figure()
        #fig, axes = plt.subplots(nrows=1)
        if contour:
            plt.hold(True)
            plt.contourf(x,y,F)
        if plot=='quiver':
            plt.quiver(x[::p],y[::p],u[::p],v[::p],scale=0.1)
        
        if plot=='pcolor':
            plt.pcolormesh(x[::4],y[::4],F[::4],cmap=plt.cm.Pastel1)
            plt.colorbar()

        if plot=='stream':
            speed = F[::16]
            plt.streamplot(x[::16], y[::16], u[::16], v[::16], density=(1,1),color='k')

        plt.xlabel('$x$ (a.u.)')
        plt.ylabel('$y$ (a.u.)')
        
        plt.savefig(os.path.join(outdir,figname+'.'+format),format=format,dpi=320,bbox_inches='tight')
        plt.close()
Ejemplo n.º 6
0
def handle_2d_plot(
    embedding,
    kind,
    color=None,
    xlabel=None,
    ylabel=None,
    title=None,
    show_operations=False,
    annot=True,
    axis_option=None,
):
    """
    Handles the logic to perform a 2d plot in matplotlib.

    **Input**

    - embedding.md: a `whatlies.Embedding` object to plot
    - kind: what kind of plot to make, can be `scatter`, `arrow` or `text`
    - color: the color to apply, only works for `scatter` and `arrow`
    - xlabel: manually override the xlabel
    - ylabel: manually override the ylabel
    - title: optional title used for the plot
    - show_operations: setting to also show the applied operations, only works for `text`
    - axis_option: a string which is passed to `matplotlib.pyplot.axis` function.
    """
    if not isinstance(embedding, list):
        # It's a single Embedding instance
        embedding = [embedding]
    vectors = np.array([e.vector for e in embedding])
    names = [e.name if show_operations else e.orig for e in embedding]
    if kind == "scatter":
        if color is None:
            color = "steelblue"
        plt.scatter(vectors[:, 0], vectors[:, 1], c=color)
    if kind == "arrow":
        plt.scatter(vectors[:, 0], vectors[:, 1], c="white", s=0.01)
        plt.quiver(
            np.zeros_like(vectors[:, 0]),
            np.zeros_like(vectors[:, 1]),
            vectors[:, 0],
            vectors[:, 1],
            color=color,
            angles="xy",
            scale_units="xy",
            scale=1,
        )
    if (kind == "text") or annot:
        for vec, name in zip(vectors, names):
            plt.text(vec[0] + 0.01, vec[1], name)

    plt.xlabel("x" if xlabel is None else xlabel)
    plt.ylabel("y" if ylabel is None else ylabel)
    if title is not None:
        plt.title(title)
    if axis_option is not None:
        plt.axis(axis_option)
Ejemplo n.º 7
0
def visualize_momentum(m, step=5):

    m = m.__array__()

    u = m[0, 0:-1:step, 0:-1:step]
    v = m[1, 0:-1:step, 0:-1:step]
    x = np.linspace(0, 1, u.shape[0])
    y = np.linspace(0, 1, u.shape[1])

    plt.quiver(x, y, u, v, scale=1)
Ejemplo n.º 8
0
def potential(x_axis,
              y_axis,
              cbar,
              x_label,
              y_label,
              cbar_label,
              int_pol,
              colorMap,
              xmin=None,
              xmax=None,
              ymin=None,
              ymax=None,
              plot=None):
    """A general plotter allowing for the plotting of a heatmap(primarily used
       here for potential function) which takes in relevant data about the
       graph. It also allows for the option of overlaying either a quiver or a
       streamline plot, or not!

    Parameters:
    x_axis, y_axis : The corresponding x and y axis data lists of a plot
    cbar: The heatmap list data which usually corresponds to x and y axis
    x_label, y_label, : The x, y and z label of the graph       dtype = string
    cbar_label : The colourbar label                            dtype = string
    int_pol: The colour interpolation of the heatmap            dtype = integer
    colorMap: The style and colour of heatmap                   dtype = string
    xmin, xmax: The minimum and maximum value of the x-axis
    ymin, ymax: The minimum and maximum value of the y-axis
    plot: "quiver", "stream" allowing for the overlay of quiver or streamline
          plot

    Returns:
    Image : AxesImage
    """
    plt.contourf(x_axis, y_axis, cbar, int_pol, cmap=colorMap)
    cbar_tag = plt.colorbar()
    Z = cbar
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    cbar_tag.set_label(cbar_label, rotation=270)
    cbar_tag.set_clim(-1000.0, 1000.0)
    E = np.gradient(Z)
    E = E / np.sqrt(E[0]**2 + E[1]**2)
    if plot is not None:
        if plot == "quiver":
            print("\nQuiver plot:")
            plt.quiver(x_axis, y_axis, E[1], E[0])
        if plot == "stream":
            print("\nStreamline Plot:")
            plt.streamplot(x_axis, y_axis, -E[1], -E[0], color='black')
    if xmin is not None and xmax is not None:
        plt.xlim(xmin, xmax)
    if ymin is not None and ymax is not None:
        plt.ylim(ymin, ymax)
    plt.show()
Ejemplo n.º 9
0
def pltShow2d(X, Y, grad):
    plt.figure()
    plt.quiver(X, Y, -grad[0], -grad[1], angles="xy",
               color="#666666")  #,headwidth=10,scale=40,color="#444444")
    plt.xlim([-2, 2])
    plt.ylim([-2, 2])
    plt.xlabel('x0')
    plt.ylabel('x1')
    plt.grid()
    plt.legend()
    plt.draw()
    plt.show()
Ejemplo n.º 10
0
def deformation(F, I, displacement_field, show_diff=False, show=True):
    """
    
    Plot how a :class:`DisplacementField` applies to a prototype image `F` to qualitatively compare it with `I`.

    Especially designed to plot the results of :func:`image_deformation`.

    Parameters
    ----------
    F : ndarray
        Prototype image.
    I : ndarray
        Data image. This is included for comparison.
    displacement_field : DisplacementField  
        A displacement field that will be applied to `F` and also plotted by itself.
    show_diff : bool
        If True, displays the difference map instead of the vector field. 
    show : bool
        Call `pylab.show()` inside the function.
    """
    import matplotlib.pylab as plt

    assert isinstance(displacement_field, ag.util.DisplacementField)

    x, y = displacement_field.meshgrid()
    Ux, Uy = displacement_field.deform_map(x, y)
    Fdef = displacement_field.deform(F)

    d = dict(interpolation='nearest', cmap=plt.cm.gray)
    plt.figure(figsize=(7, 7))
    plt.subplot(221)
    plt.title("Prototype")
    plt.imshow(F, **d)
    plt.subplot(222)
    plt.title("Data image")
    plt.imshow(I, **d)
    plt.subplot(223)
    plt.title("Deformed prototype")
    plt.imshow(Fdef, **d)
    plt.subplot(224)
    if show_diff:
        plt.title("Difference")
        plt.imshow(Fdef - I, interpolation='nearest')
        plt.colorbar()
    else:
        plt.title("Displacement field")
        plt.quiver(np.asarray(y),
                   np.asarray(-x),
                   np.asarray(Uy),
                   np.asarray(-Ux),
                   linewidth=2.0)
    if show:
        plt.show()
Ejemplo n.º 11
0
def plot_current(GLORYS_path, numday):
    """ """
    # Read data.
    U_cur, V_cur, xu, xv, yu, yv = read_current(GLORYS_path, numday)
    # Interpolate V over U grid :
    V_interp = np.zeros(np.shape(V_cur))
    for i in range(np.shape(V_interp)[0]):
        for j in range(np.shape(V_interp)[1]):
            V_interp[i, j] = interpolate_var(V_cur, xv, yv, xu[i], yu[j])
    xu, U_cur = shift_lon(xu, U_cur)
    xv, V_interp = shift_lon(xv, V_interp)
    pl.quiver(xu, yu, U_cur, V_interp)
    pl.show()
Ejemplo n.º 12
0
    def __call__(self, **params):

        p = ParamOverrides(self, params)
        name = p.plot_template.keys().pop(0)
        plot = make_template_plot(p.plot_template,
                                  p.sheet.views.Maps,
                                  p.sheet.xdensity,
                                  p.sheet.bounds,
                                  p.normalize,
                                  name=p.plot_template[name])
        fig = plt.figure(figsize=(5, 5))
        if plot:
            bitmap = plot.bitmap
            isint = plt.isinteractive(
            )  # Temporarily make non-interactive for plotting
            plt.ioff()  # Turn interactive mode off

            plt.imshow(bitmap.image, origin='lower', interpolation='nearest')
            plt.axis('off')

            for (t, pref, sel, c) in p.overlay:
                v = plt.flipud(p.sheet.views.Maps[pref].view()[0])
                if (t == 'contours'):
                    plt.contour(v, [sel, sel], colors=c, linewidths=2)

                if (t == 'arrows'):
                    s = plt.flipud(p.sheet.views.Maps[sel].view()[0])
                    scale = int(np.ceil(np.log10(len(v))))
                    X = np.array([x for x in xrange(len(v) / scale)])
                    v_sc = np.zeros((len(v) / scale, len(v) / scale))
                    s_sc = np.zeros((len(v) / scale, len(v) / scale))
                    for i in X:
                        for j in X:
                            v_sc[i][j] = v[scale * i][scale * j]
                            s_sc[i][j] = s[scale * i][scale * j]
                    plt.quiver(scale * X,
                               scale * X,
                               -np.cos(2 * np.pi * v_sc) * s_sc,
                               -np.sin(2 * np.pi * v_sc) * s_sc,
                               color=c,
                               edgecolors=c,
                               minshaft=3,
                               linewidths=1)

            p.title = '%s overlaid with %s at time %s' % (plot.name, pref,
                                                          topo.sim.timestr())
            if isint: plt.ion()
            p.filename_suffix = "_" + p.sheet.name
            self._generate_figure(p)
            return fig
Ejemplo n.º 13
0
def deformation(F, I, displacement_field, show_diff=False, show=True):
    """
    
    Plot how a :class:`DisplacementField` applies to a prototype image `F` to qualitatively compare it with `I`.

    Especially designed to plot the results of :func:`image_deformation`.

    Parameters
    ----------
    F : ndarray
        Prototype image.
    I : ndarray
        Data image. This is included for comparison.
    displacement_field : DisplacementField  
        A displacement field that will be applied to `F` and also plotted by itself.
    show_diff : bool
        If True, displays the difference map instead of the vector field. 
    show : bool
        Call `pylab.show()` inside the function.
    """
    import matplotlib.pylab as plt
    
    assert isinstance(displacement_field, ag.util.DisplacementField) 

    x, y = displacement_field.meshgrid()
    Ux, Uy = displacement_field.deform_map(x, y) 
    Fdef = displacement_field.deform(F)

    d = dict(interpolation='nearest', cmap=plt.cm.gray)
    plt.figure(figsize=(7,7))
    plt.subplot(221)
    plt.title("Prototype")
    plt.imshow(F, **d)
    plt.subplot(222)
    plt.title("Data image")
    plt.imshow(I, **d) 
    plt.subplot(223)
    plt.title("Deformed prototype")
    plt.imshow(Fdef, **d)
    plt.subplot(224)
    if show_diff:
        plt.title("Difference")
        plt.imshow(Fdef - I, interpolation='nearest')
        plt.colorbar()
    else:
        plt.title("Displacement field")
        plt.quiver(np.asarray(y), np.asarray(-x), np.asarray(Uy), np.asarray(-Ux), linewidth=2.0)
    if show:
        plt.show()
Ejemplo n.º 14
0
def direction_field():
    # get axis limits
    ymax = plt.ylim(ymin=0)[1]
    xmax = plt.xlim(xmin=0)[1]
    nb_points = 30

    x = np.linspace(0, xmax, nb_points)
    y = np.linspace(0, ymax, nb_points)

    # create a grid with the axis limits
    X, Y = np.meshgrid(x, y)

    # compute growth rate on the grid
    U = 1
    V = dp_dt(Y, A, K)

    # to synchronize the scale of grid between solution plot ft_increase, ft_derease and direction fields
    # otherwise, the direction of arrows do not look to be tangential to the solution plot.
    V = V * xmax / ymax

    # norm of logistics
    M = np.sqrt(U**2 + V**2, dtype=np.float64)
    # avoid zero division errors
    M[M == 0] = 1.

    # normalize each arrow
    U /= M
    V /= M

    # plot the direction field for the range of parameters
    # define a grid and compute direction at each point
    Q = plt.quiver(X, Y, U, V, M, pivot='mid', cmap=plt.cm.jet)
Ejemplo n.º 15
0
    def plot_neuron_arrows(self, colorrange=[0, 2],visualize=False):
        """ Plot arrows from each neuron center and color with strength """

        best_actions = np.argmax(self.weights_, 2)
        action_strength = np.max(self.weights_, 2)

        dX = np.cos(2 * np.pi / 8 * best_actions)
        dY = np.sin(2 * np.pi / 8 * best_actions)

        plt.figure(figsize=(5.5, 5.5))
        plt.subplot(aspect='equal')
        arrows = plt.quiver(self.centers_[0], self.centers_[1], dX, dY, action_strength, scale=10, headwidth=5,
                            cmap='autumn_r', clim=colorrange)

        if visualize:
            positions = np.array(self.pos_history_)
            plt.plot(positions[:, 0], positions[:, 1], 'ko-', alpha=0.2,markersize=5)


        plt.xlim(-0.05, 1.05)
        plt.ylim(-0.05, 1.05)
        self._plot_dots()

        from mpl_toolkits.axes_grid1 import make_axes_locatable
        divider = make_axes_locatable(plt.gca())
        cax = divider.append_axes("right", "5%", pad="3%")
        cbar = plt.colorbar(arrows, cax=cax)
        cbar.ax.set_ylabel('highest weight value')
        plt.tight_layout()

        plt.draw()
def gradient_descent(f, init_x, lr=0.01, step_num=100):
    x = init_x
    x_history = []

    for i in range(step_num):
        x_history.append(x.copy())

        grad = numerical_gradient(f, x)
        plt.quiver(x[0],
                   x[1],
                   -grad[0],
                   -grad[1],
                   angles="xy",
                   color="#666666")
        x -= lr * grad

    return x, np.array(x_history)
Ejemplo n.º 17
0
def vector_field2d(barycenters, vector_field, N, figure=None):
    dn = 1. / N
    N = complex(0, N)
    xmin, xmax = barycenters[:, 0].min(), barycenters[:, 0].max()
    ymin, ymax = barycenters[:, 1].min(), barycenters[:, 1].max()
    
    vector_field *= dn / sqrt((vector_field ** 2).sum(1).max())
    grid = mgrid[xmin + dn*(xmax-xmin):xmax:N, ymin + dn*(ymax-ymin):ymax:N]
    z1 = [griddata(barycenters, z0, grid.transpose((1,2,0)), method='linear') for z0 in vector_field.T]
        
    from matplotlib import pylab
    X, Y = grid
    VX, VY = z1
    if figure == None:
        fig = pylab.figure(figsize=(10,10))
    pylab.quiver(X, Y, VX, VY, sqrt(VX ** 2 + VY ** 2), scale=1, figure=figure)
    pylab.axis([xmin, xmax, ymin, ymax])
Ejemplo n.º 18
0
    def plot_quiver(self, n):
        """ Plot the curve and the vector field at a particular timestep """
        self.new_figure()

        x,y = self.split_array(self.Q[n])

        u,v = self.split_array(self.U[n])

        mag = [np.sqrt(u[i]**2+v[i]**2) for i in xrange(np.size(u))]
        norm = plt.normalize(np.min(mag), np.max(mag))

        C = [plt.cm.jet(norm(m)) for m in mag]

        plt.plot(x,y)
        plt.quiver(x,y,-u,-v,color=C)
        #plt.plot(*self.split_array(self.qA),color='grey',ls=':')
        plt.plot(*self.split_array(self.qB),color='grey',ls=':')
Ejemplo n.º 19
0
def handle_2d_plot(
    embedding,
    kind,
    color=None,
    xlabel=None,
    ylabel=None,
    show_operations=False,
    annot=False,
):
    """
    Handles the logic to perform a 2d plot in matplotlib.

    **Input**

    - embedding.md: a `whatlies.Embedding` object to plot
    - kind: what kind of plot to make, can be `scatter`, `arrow` or `text`
    - color: the color to apply, only works for `scatter` and `arrow`
    - xlabel: manually override the xlabel
    - ylabel: manually override the ylabel
    - show_operations: setting to also show the applied operations, only works for `text`
    """
    name = embedding.name if show_operations else embedding.orig
    if kind == "scatter":
        if color is None:
            color = "steelblue"
        plt.scatter([embedding.vector[0]], [embedding.vector[1]], c=color)
    if kind == "arrow":
        plt.scatter([embedding.vector[0]], [embedding.vector[1]],
                    c="white",
                    s=0.01)
        plt.quiver(
            [0],
            [0],
            [embedding.vector[0]],
            [embedding.vector[1]],
            color=color,
            angles="xy",
            scale_units="xy",
            scale=1,
        )
        plt.text(embedding.vector[0] + 0.01, embedding.vector[1], name)
    if (kind == "text") or annot:
        plt.text(embedding.vector[0] + 0.01, embedding.vector[1], name)

    plt.xlabel("x" if not xlabel else xlabel)
    plt.ylabel("y" if not ylabel else ylabel)
Ejemplo n.º 20
0
    def plot_field(self,
                   x,
                   y,
                   u=None,
                   v=None,
                   F=None,
                   contour=False,
                   outdir=None,
                   plot='quiver',
                   figname='_field',
                   format='eps'):
        outdir = self.set_dir(outdir)
        p = 64
        if F is None: F = self.calc_F(u, v)

        plt.close('all')
        plt.figure()
        #fig, axes = plt.subplots(nrows=1)
        if contour:
            plt.hold(True)
            plt.contourf(x, y, F)
        if plot == 'quiver':
            plt.quiver(x[::p], y[::p], u[::p], v[::p], scale=0.1)

        if plot == 'pcolor':
            plt.pcolormesh(x[::4], y[::4], F[::4], cmap=plt.cm.Pastel1)
            plt.colorbar()

        if plot == 'stream':
            speed = F[::16]
            plt.streamplot(x[::16],
                           y[::16],
                           u[::16],
                           v[::16],
                           density=(1, 1),
                           color='k')

        plt.xlabel('$x$ (a.u.)')
        plt.ylabel('$y$ (a.u.)')

        plt.savefig(os.path.join(outdir, figname + '.' + format),
                    format=format,
                    dpi=320,
                    bbox_inches='tight')
        plt.close()
Ejemplo n.º 21
0
 def on_means(limits, count, mean_vx, mean_vy):
     if normalize:
         length = np.sqrt(mean_vx**2 + mean_vy**2)
         mean_vx = mean_vx / length
         mean_vy = mean_vy / length
     x_centers = self.bin_centers(x, limits[0], shape=shape[0])
     y_centers = self.bin_centers(y, limits[1], shape=shape[1])
     Y, X = np.meshgrid(x_centers, y_centers)  # , indexing='ij')
     count = count.flatten()
     mask = count >= min_count
     kwargs['alpha'] = kwargs.get('alpha', 0.7)
     plt.quiver(X.flatten()[mask],
                Y.flatten()[mask],
                mean_vx.flatten()[mask],
                mean_vy.flatten()[mask], **kwargs)
     if show:
         plt.show()
     return
Ejemplo n.º 22
0
    def navigation_map(self, K=25):

        plt.figure(figsize=(5.5, 5.5))
        plt.subplot(aspect='equal')
        X, Y = np.meshgrid(np.linspace(0, 1, K + 1), np.linspace(0, 1, K + 1))

        best_actions = np.zeros((K + 1, K + 1))

        for i in range(K + 1):
            for j in range(K + 1):
                best_actions[i, j] = np.argmax(self.get_Qvalue_(X[i, j], Y[i, j]))

        dX = np.cos(2 * np.pi / self.n_actions_ * best_actions)
        dY = np.sin(2 * np.pi / self.n_actions_ * best_actions)
        plt.quiver(X, Y, dX, dY, scale=20)

        self._plot_dots()

        plt.draw()
Ejemplo n.º 23
0
 def quiver(self,coordinate,attribute):
     '''
     Quiver plot the attribute of the body.chord
     
     Input
     -----
     coordinates - the coordinates of the quiver plot. Standard coordinates
                   of the body: 'geometry'.
                   
     attribute   - body parameter that needs to plotted. Ex. 'geometry'
     
     Returns
     -------
     quiver plot with attributes plotted at given coordinates. Figure not
     configured.        
     '''
             
     plt.quiver(self.__dict__[coordinate][0], self.__dict__[coordinate][1],
                self.__dict__[attribute][0],  self.__dict__[attribute][1])
Ejemplo n.º 24
0
 def on_means(limits, count, mean_vx, mean_vy):
     if normalize:
         length = np.sqrt(mean_vx**2 + mean_vy**2)
         mean_vx = mean_vx / length
         mean_vy = mean_vy / length
     x_centers = self.bin_centers(x, limits[0], shape=shape[0])
     y_centers = self.bin_centers(y, limits[1], shape=shape[1])
     Y, X = np.meshgrid(y_centers, x_centers)  # , indexing='ij')
     count = count.flatten()
     mask = count >= min_count
     kwargs['alpha'] = kwargs.get('alpha', 0.7)
     plt.quiver(X.flatten()[mask],
                Y.flatten()[mask],
                mean_vx.flatten()[mask],
                mean_vy.flatten()[mask],
                **kwargs)
     if show:
         plt.show()
     return
Ejemplo n.º 25
0
    def _plot_vector_field(self, resolution):
        """
        Plot vector field.

        Arguments
            resolution
                Resolution of plot
        """
        x_mesh, y_mesh, ode_x, ode_y = self._get_ode_values(resolution)

        # scale vector field
        hyp = np.hypot(ode_x, ode_y)
        hyp[hyp==0] = 1.
        ode_x /= hyp
        ode_y /= hyp

        plt.quiver(
            x_mesh, y_mesh,
            ode_x, ode_y,
            pivot='mid', color='lightgray')
Ejemplo n.º 26
0
def draw_gradient_2d():
    x0 = np.arange(-2, 2.5, 0.25)
    x1 = np.arange(-2, 2.5, 0.25)
    X, Y = np.meshgrid(x0, x1)

    X = X.flatten()
    Y = Y.flatten()

    grad = numerical_gradient(function_2, np.array([X, Y]))

    plt.figure()
    plt.quiver(X, Y, -grad[0], -grad[1], angles="xy", color="#666666")
    plt.xlim([-2, 2])
    plt.ylim([-2, 2])
    plt.xlabel('x0')
    plt.ylabel('x1')
    plt.grid()
    plt.legend()
    plt.draw()
    plt.show()
Ejemplo n.º 27
0
Archivo: vis.py Proyecto: lds2/kahler
def vector_field2d(barycenters, vector_field, N, figure=None):
    dn = 1. / N
    N = complex(0, N)
    xmin, xmax = barycenters[:, 0].min(), barycenters[:, 0].max()
    ymin, ymax = barycenters[:, 1].min(), barycenters[:, 1].max()

    vector_field *= dn / sqrt((vector_field**2).sum(1).max())
    grid = mgrid[xmin + dn * (xmax - xmin):xmax:N,
                 ymin + dn * (ymax - ymin):ymax:N]
    z1 = [
        griddata(barycenters, z0, grid.transpose((1, 2, 0)), method='linear')
        for z0 in vector_field.T
    ]

    from matplotlib import pylab
    X, Y = grid
    VX, VY = z1
    if figure == None:
        fig = pylab.figure(figsize=(10, 10))
    pylab.quiver(X, Y, VX, VY, sqrt(VX**2 + VY**2), scale=1, figure=figure)
    pylab.axis([xmin, xmax, ymin, ymax])
Ejemplo n.º 28
0
   def __call__(self, **params):

       p=ParamOverrides(self,params)
       name=p.plot_template.keys().pop(0)
       plot=make_template_plot(p.plot_template,
                               p.sheet.views.Maps, p.sheet.xdensity,p.sheet.bounds,
                               p.normalize,name=p.plot_template[name])
       fig = plt.figure(figsize=(5,5))
       if plot:
           bitmap=plot.bitmap
           isint=plt.isinteractive() # Temporarily make non-interactive for plotting
           plt.ioff()                                         # Turn interactive mode off

           plt.imshow(bitmap.image,origin='lower',interpolation='nearest')
           plt.axis('off')

           for (t,pref,sel,c) in p.overlay:
               v = plt.flipud(p.sheet.views.Maps[pref].view()[0])
               if (t=='contours'):
                   plt.contour(v,[sel,sel],colors=c,linewidths=2)

               if (t=='arrows'):
                   s = plt.flipud(p.sheet.views.Maps[sel].view()[0])
                   scale = int(np.ceil(np.log10(len(v))))
                   X = np.array([x for x in xrange(len(v)/scale)])
                   v_sc = np.zeros((len(v)/scale,len(v)/scale))
                   s_sc = np.zeros((len(v)/scale,len(v)/scale))
                   for i in X:
                       for j in X:
                           v_sc[i][j] = v[scale*i][scale*j]
                           s_sc[i][j] = s[scale*i][scale*j]
                   plt.quiver(scale*X, scale*X, -np.cos(2*np.pi*v_sc)*s_sc,
                              -np.sin(2*np.pi*v_sc)*s_sc, color=c,
                              edgecolors=c, minshaft=3, linewidths=1)

           p.title='%s overlaid with %s at time %s' %(plot.name,pref,topo.sim.timestr())
           if isint: plt.ion()
           p.filename_suffix="_"+p.sheet.name
           self._generate_figure(p)
           return fig
Ejemplo n.º 29
0
def plot_motion_field_quiver(UV, geodata=None, step=15):
    """Function to plot a precipitation field witha a colorbar. 
    
    Parameters 
    ---------- 
    UV : array-like 
        Array of shape (2, m,n) containing the input motion field.
    geodata : dictionary
    step : int
    
    Returns: 
    ----------
    ax : fig axes
        Figure axes. Needed if one wants to add e.g. text inside the plot.
    
    """

    # prepare X Y coordinates
    if geodata is not None:
        X, Y = np.meshgrid(
            np.arange(geodata['x1'] / 1000, geodata['x2'] / 1000),
            np.arange(geodata['y1'] / 1000, geodata['y2'] / 1000))
    else:
        X, Y = np.meshgrid(np.arange(UV.shape[2]), np.arange(UV.shape[1]))

    # reduce number of vectors to plot
    UV_ = UV[:, 0:UV.shape[1]:step, 0:UV.shape[2]:step]
    X_ = X[0:UV.shape[1]:step, 0:UV.shape[2]:step]
    Y_ = Y[0:UV.shape[1]:step, 0:UV.shape[2]:step]

    plt.quiver(X_, Y_, UV_[0, :, :], -UV_[1, :, :], pivot='tip')

    axes = plt.gca()

    if geodata is None:
        axes.xaxis.set_ticklabels([])
        axes.yaxis.set_ticklabels([])

    return axes
Ejemplo n.º 30
0
    def _plot_vector_field(self, resolution):
        """
        Plot vector field.

        Arguments
            resolution
                Resolution of plot
        """
        x_mesh, y_mesh, ode_x, ode_y = self._get_ode_values(resolution)

        # scale vector field
        hyp = np.hypot(ode_x, ode_y)
        hyp[hyp == 0] = 1.
        ode_x /= hyp
        ode_y /= hyp

        plt.quiver(x_mesh,
                   y_mesh,
                   ode_x,
                   ode_y,
                   pivot='mid',
                   color='lightgray')
Ejemplo n.º 31
0
def test_east_w1_lonlat(grid, target_points, connectivity):
    """
    Test computation of edge integrals using an eastward vector field
    """

    nedge = grid.getNumberOfEdges()
    ntarget = target_points.shape[0]

    lon = connectivity['lon']
    lat = connectivity['lat']
    edge_node_connect = connectivity['edge_node_connect']

    # set the components
    u1 = numpy.ones((nedge, ), numpy.float64)  # east
    u2 = numpy.zeros((nedge, ), numpy.float64)
    ue_integrated = getIntegralsInLonLat(lon,
                                         lat,
                                         edge_node_connect,
                                         u1,
                                         u2,
                                         w1=True)
    vi = VectorInterp()
    vi.setGrid(grid)
    vi.buildLocator(numCellsPerBucket=100)
    vi.findPoints(target_points, tol2=1.e-10)

    vects = vi.getEdgeVectors(ue_integrated, placement=1)
    error = numpy.sum(numpy.fabs(vects[:, 1] / (vects[:, 0] + EPS))) / ntarget

    print(f'test_east_w1_lonlat: error = {error}')
    assert (error < 0.06)

    if False:
        from matplotlib import pylab
        pylab.quiver(target_points[:, 0], target_points[:, 1], vects[:, 0],
                     vects[:, 1])
        pylab.title('test_east_w1_lonlat')
        pylab.show()
Ejemplo n.º 32
0
def gradient(
       func, x0_max=2.5, x0_min=-2., x0_step=0.25,
       x1_max=2.5, x1_min=-2., x1_step=0.25,
       x_max=2., x_min=-2., y_max=2., y_min=-2.):
    x0_elements = np.arange(x0_min, x0_max, x0_step)
    x1_elements = np.arange(x1_min, x1_max, x1_step)

    X, Y = np.meshgrid(x0_elements, x1_elements)
    X = X.flatten()
    Y = Y.flatten()

    y = differentiations.numerical_gradient(func, np.array([X, Y]))

    plt.figure()
    plt.quiver(X, Y, y[0], y[1],  angles="xy",color="#666666")
    plt.xlim([x_min, x_max])
    plt.ylim([y_min, y_max])
    plt.xlabel('x0')
    plt.ylabel('x1')
    plt.grid()
    plt.legend()
    plt.draw()
    plt.show()
Ejemplo n.º 33
0
def quiver(grid, u_field_name, v_field_name, **kwargs):
    fig = plt.figure()
    plt.axes().set_aspect('equal')

    u, v = grid.get_cell_fields(u_field_name, v_field_name)
    cell_nodes = grid.cell_nodes

    plt.quiver(cell_nodes[:, :, 0], cell_nodes[:, :, 1], u, v)

    if kwargs.get('show_grid', False):
        plt.plot(cell_nodes[:, :, 0], cell_nodes[:, :, 1], '-', color='black')
        plt.plot(np.transpose(cell_nodes[:, :, 0]), np.transpose(cell_nodes[:, :, 1]), '-', color='black')

    if kwargs.get('mark_cell_centers', False):
        plt.plot(cell_nodes[:, :, 0], cell_nodes[:, :, 1], 'o', color='black')

    if kwargs.get('show', False):
        plt.show()

    f = BytesIO()
    plt.savefig(f)

    return f
Ejemplo n.º 34
0
def main():
    F = np.load("faces.npz")['F']
    F = F[:, :, ::-1]
    testing = ag.io.load_example('mnist')
    testing = testing[:, ::-1]

    settings = dict(origin='lower', interpolation='nearest', cmap=plt.cm.gray)
    for d in [9]:
        print("Digit:", d)
        imdef, info = ag.ml.bernoulli_model(testing[0], F[d], calc_costs=True)
        print(info['iterations_per_level'])
        print(-info['loglikelihoods'][-1] - info['logpriors'][-1])

        subject = testing[1]
        #imdef = ag.util.DisplacementFieldWavelet(testing[0].shape)
        #imdef.u[0][0,0] = 0.6
        x, y = imdef.get_x(subject.shape)
        Ux, Uy = imdef.deform_map(x, y)

        print('U-max:', Ux.max(), Uy.max())
        #print(imdef.u)

        im = imdef.deform(subject)

        plt.figure(figsize=(7, 7))
        plt.subplot(221)
        plt.imshow(subject, **settings)
        plt.subplot(222)
        plt.imshow(im, **settings)
        plt.subplot(223)
        plt.imshow(F[d].sum(axis=0), **settings)
        plt.subplot(224)
        plt.quiver(y, x, Uy, Ux)
        #plt.plot(-(info['loglikelihoods']+info['logpriors']))

    plt.show()
def visualize():

    x = np.arange(3, 7., 0.15)
    y = np.arange(3, 7., 0.5)

    xx, yy = np.meshgrid(x, y)

    d = 1.
    start = np.array([4.75, 4.75])

    #  Location of points
    #  1   2
    #  0   3

    loc = np.array(([start[0], start[1]], [start[0], start[1] + d],
                    [start[0] + d, start[1] + d], [start[0] + d, start[1]]))
    psi = np.zeros_like(xx)
    vxx = np.zeros_like(xx)
    vyy = np.zeros_like(xx)

    gamma = np.array([1., -1., -1., 1.])
    for i in np.arange(0, 4):
        p, vx, vy = vortex_flow(xx, yy, loc[i, 0], loc[i, 1], gamma=gamma[i])

        psi += p
        vxx += vx
        vyy += vy

    # plt.contour(xx, yy, vxx, 100)
    # plt.contourf(xx, yy, vyy, 100)
    # plt.contourf(xx, yy, psi, 100)
    plt.contour(xx, yy, np.sqrt(vxx**2 + vyy**2), 100)
    plt.quiver(xx, yy, vxx, vyy)
    plt.scatter(loc[:, 0], loc[:, 1])
    plt.show()
    return
Ejemplo n.º 36
0
 def __init__(self, cells, t, **kwargs):
     """
     Creates a new flux map
     :param cells: The cells to be used
     :param t: The current time step
     :param kwargs: Keyword arguments for plt.quiver
     """
     self.cells = cells
     # get position vector
     p = cmf.cell_positions(cells)
     # get flux vector
     f = cmf.cell_flux_directions(cells, t)
     self.t = t
     a = numpy.array
     self.quiver = plt.quiver(a(p.X), a(p.Y), a(f.X), a(f.Y), **kwargs)
Ejemplo n.º 37
0
def main():
    F = np.load("faces.npz")['F']
    F = F[:,:,::-1]
    testing = ag.io.load_example('mnist')
    testing = testing[:,::-1]

    settings = dict(origin='lower', interpolation='nearest', cmap=plt.cm.gray)
    for d in [9]: 
        print("Digit:", d)
        imdef, info = ag.ml.bernoulli_model(testing[0], F[d], calc_costs=True)
        print(info['iterations_per_level'])
        print(-info['loglikelihoods'][-1] - info['logpriors'][-1])

        subject = testing[1]
        #imdef = ag.util.DisplacementFieldWavelet(testing[0].shape)
        #imdef.u[0][0,0] = 0.6 
        x, y = imdef.get_x(subject.shape)
        Ux, Uy = imdef.deform_map(x, y)

        print('U-max:',Ux.max(), Uy.max())
        #print(imdef.u)

        im = imdef.deform(subject) 

        plt.figure(figsize=(7,7))
        plt.subplot(221)
        plt.imshow(subject, **settings)
        plt.subplot(222)
        plt.imshow(im, **settings)
        plt.subplot(223)
        plt.imshow(F[d].sum(axis=0), **settings)
        plt.subplot(224)
        plt.quiver(y, x, Uy, Ux) 
        #plt.plot(-(info['loglikelihoods']+info['logpriors']))

    plt.show()
Ejemplo n.º 38
0
def twoD_ArrayQuiver(X, Y, Z):
    """
    Represent a 2D array with arrows
    
    Parameters
    ----------
    X : numpy.ndarray
        メッシュのX座標
    Y : numpy.ndarray
        メッシュのY座標
    Z : numpy.ndarray
        メッシュのZ座標
    """

    plt.figure()
    plt.quiver(X, Y, -Z[0], -Z[1], angles='xy', color='#666666')
    plt.xlim([-2, 2])
    plt.ylim([-2, 2])
    plt.xlabel('x0')
    plt.ylabel('x1')
    plt.grid()
    plt.legend()
    plt.draw()
    plt.show()
Ejemplo n.º 39
0
def main(F, coef, filename=None, test_index=1):
        
    #Fmax = F.max()
    #F *= 1.0
    #F = np.clip(F, 0.01, 1.0 - 0.01)
    #print("Normalizing with {0}".format(Fmax))
    #testing = ag.io.load_example('mnist')
    testing = np.load('digits.npz')['nines']
    testing = testing[:,::-1]

    settings = dict(origin='lower', interpolation='nearest', cmap=None, vmin=0.0, vmax=1.0)
    feat = int(sys.argv[1]) 

    costs = []
    for d in [9]: 
        print("Digit:", d)
        imdef, info = ag.ml.bernoulli_model(F[d], testing[test_index], calc_costs=True, tol=1e-4)
        #imdef, info = ag.ml.imagedef(F[d], testing[test_index], coef=1e-2, stepsize=0.3, calc_costs=True)


        print(info['iterations_per_level'])
        print("Cost:", -info['loglikelihoods'][-1] - info['logpriors'][-1])

        subject = ag.features.bedges(testing[test_index])[:,:,feat].astype(np.float64)

        #subject = testing[1]
        #imdef = ag.util.DisplacementFieldWavelet(testing[0].shape)
        #imdef.u[0][0,0] = 0.6 
        x, y = imdef.get_x(subject.shape)
        Ux, Uy = imdef.deform_map(x, y)

        print('U-max:',Ux.max(), Uy.max())
        #print(imdef.u)

        imf = imdef.deform(subject) 
        canon_nine = np.load('canonical-digits.npz')['F'][9]
        #im = imdef.deform(F[d,feat])
        im = imdef.deform(canon_nine)
       
        costs.append(-info['loglikelihoods'][-1] - info['loglikelihoods'][-1])

        if PLOT:
            plt.figure(figsize=(11,7))
            plt.subplot(231)
            plt.imshow(subject, **settings)
            plt.subplot(232)
            plt.imshow(imf, **settings)
            plt.subplot(233)
            #plt.imshow(F[d,feat], **settings)
            plt.imshow(F[d,feat], **settings)
            plt.subplot(234)
            plt.quiver(y, x, Uy, Ux, scale=1.0) 
            plt.subplot(235)
            plt.imshow(testing[test_index], **settings)
            plt.subplot(236)
            plt.imshow(im, **settings)
            plt.colorbar()
            #plt.plot(-(info['loglikelihoods']+info['logpriors']))

    print("RESULT Digit: {0}".format(np.argmin(costs)))

    if PLOT:
        if filename:
            plt.savefig(filename)
        else:
            plt.show()
Ejemplo n.º 40
0
g = lambda y: -(y - W/2.)
#f = lambda x: np.sin(x/175. + 100)

for i in xrange(0,N):
    for j in xrange(0,N):
        U[i,j] = f(p*i)
        V[i,j] = g(p*j)
        X[i,j] = p*i
        Y[i,j] = p*j



im.new_figure()
#plt.figure()
#plt.axis("equal")
plt.quiver(X,Y,U,V,color='k',scale_units='inches', scale=3000)
qx,qy = im.split_array(q)
plt.plot(qx,qy,color="k", lw=3)
plt.axis((0,W,0,W))
plt.savefig("misc/outer_field.pdf",bbox_inches='tight')

#no build the quiver for the inner metric plot
u = [f(x) for x in qx]
v = [g(y) for y in qy]

ut = []
vt = []
xt = []
yt = []

for i in np.arange(0,201,2):
Ejemplo n.º 41
0

def tangent_line(f, x):
    d = numerical_gradient(f, x)
    print(d)
    y = f(x) - d * x
    return lambda t: d * t + y


if __name__ == '__main__':
    x0 = np.arange(-2, 2.5, 0.25)
    x1 = np.arange(-2, 2.5, 0.25)
    X, Y = np.meshgrid(x0, x1)

    X = X.flatten()
    Y = Y.flatten()

    grad = numerical_gradient(function_2, np.array([X, Y]))

    plt.figure()
    plt.quiver(X, Y, -grad[0], -grad[1], angles="xy",
               color="#666666")  #,headwidth=10,scale=40,color="#444444")
    plt.xlim([-2, 2])
    plt.ylim([-2, 2])
    plt.xlabel('x0')
    plt.ylabel('x1')
    plt.grid()
    plt.legend()
    plt.draw()
    plt.show()
Ejemplo n.º 42
0
import numpy as np
import matplotlib.pylab as plt


images = np.load('nines.npz')['images']
im = images[0]
im = im[::-1,:]

plt.figure(figsize=(14,6))
plt.subplot(121)
plt.xlabel('x')
plt.ylabel('y')
plt.imshow(im, interpolation='nearest', origin='lower')

plt.subplot(122)
plt.quiver(im, np.zeros(im.shape))

plt.show()

Ejemplo n.º 43
0
def symimage(*args,**kwargs):
    I = plp.Image()
    T = plp.Tools()
    #fig = plt.figure()
    Dmhd = plp.pload(319,w_dir='/Users/bhargavvaidya/pyPLUTO-wdir/M30a055b5_data/')
    Data = args[0]
    sclf =  kwargs.get('scalefact',1.0)
    if kwargs.get('log',False)==True:
        var = np.log10(sclf*Data.__getattribute__(args[1]))
    else:
        var = sclf*Data.__getattribute__(args[1])
    x1 = Data.x1
    x2 = Data.x2                   
    plt.axis([-x1.max(),x1.max(),0.0,x2.max()])

    plt.title(kwargs.get('title',"Title"),size=kwargs.get('size'))
    plt.xlabel(kwargs.get('label1',"Xlabel"),size=kwargs.get('size'),labelpad=6)
    plt.ylabel(kwargs.get('label2',"Ylabel"),size=kwargs.get('size'),labelpad=6)
    
    xm,ym = np.meshgrid(x1.T,x2.T)
    xmc = T.congrid(xm,2*([kwargs.get('arrows')[1]]),method='linear')
    ymc = T.congrid(ym,2*([kwargs.get('arrows')[1]]),method='linear')
    v1c = T.congrid(Data.v1.T,2*([kwargs.get('arrows')[1]]),method='linear')
    v2c = T.congrid(Data.v2.T,2*([kwargs.get('arrows')[1]]),method='linear')
    v1cn,v2cn = v1c/np.sqrt(v1c**2+v2c**2),v2c/np.sqrt(v1c**2+v2c**2)
                        
    
    if kwargs.get('ysym',False) == True:
        ysymvar = np.flipud(var)
        plc1=plt.pcolormesh(-x1[::-1],x2,ysymvar.T,vmin=kwargs.get('vmin',np.min(var)),vmax=kwargs.get('vmax',np.max(var)))
        plc2=plt.pcolormesh(x1,x2,var.T,vmin=kwargs.get('vmin',np.min(var)),vmax=kwargs.get('vmax',np.max(var)))
        
        if kwargs.get('cbar',(False,''))[0] == True:
            plcol=plt.colorbar(orientation=kwargs.get('cbar')[1])
        if kwargs.get('arrows',(False,20))[0]==True:
            plq1=plt.quiver(xmc,ymc,v1cn,v2cn,color='k')
            plq2=plt.quiver(-xmc,ymc,-v1cn,v2cn,color='k')
            

        if kwargs.get('flines',(False,[3.0,6.0,10.0,15.0],[0.001,0.001,0.001,0.001]))[0]==True:
            x0arr = kwargs.get('flines')[1]
            y0arr = kwargs.get('flines')[2]
            for i in range(np.size(x0arr)):
                flmhd = I.field_line(Dmhd.b1,Dmhd.b2,Dmhd.x1,Dmhd.x2,Dmhd.dx1,Dmhd.dx2,x0arr[i],y0arr[i])
                Qxmhd = flmhd.get('qx')
                Qymhd = flmhd.get('qy')
                fl =I.field_line(Data.b1,Data.b2,Data.x1,Data.x2,Data.dx1,Data.dx2,x0arr[i],y0arr[i])
                Qx= fl.get('qx')
                Qy= fl.get('qy')
                plfl1=plt.plot(Qx,Qy,color=kwargs.get('colors','r'),ls=kwargs.get('ls','-'),lw=kwargs.get('lw',2.0))
                plfl2=plt.plot(-Qx,Qy,color=kwargs.get('colors','r'),ls=kwargs.get('ls','-'),lw=kwargs.get('lw',2.0))
                plfl3=plt.plot(Qxmhd,Qymhd,color=kwargs.get('colors','w'),ls=kwargs.get('ls','--'),lw=kwargs.get('lw',2.0))
                plfl4=plt.plot(-Qxmhd,Qymhd,color=kwargs.get('colors','w'),ls=kwargs.get('ls','--'),lw=kwargs.get('lw',2.0))

    if kwargs.get('xsym',False) == True:
        xsymvar = np.fliplr(var)
        plc1=plt.pcolormesh(x1,-x2[::-1],xsymvar.T,vmin=kwargs.get('vmin',np.min(var)),vmax=kwargs.get('vmax',np.max(var)))
        plc2=plt.pcolormesh(x1,x2,var.T,vmin=kwargs.get('vmin',np.min(var)),vmax=kwargs.get('vmax',np.max(var)))
        if kwargs.get('cbar',(False,''))[0] == True:
            plcol=plt.colorbar(orientation=kwargs.get('cbar')[1])

        if kwargs.get('arrows',(False,20))[0]==True:
            plq1=plt.quiver(xmc,ymc,v1cn,v2cn,color='g')
            plq2=plt.quiver(xmc,-ymc,v1cn,-v2cn,color='g')
            
            
        if kwargs.get('flines',(False,[3.0,6.0,10.0,15.0],[0.001,0.001,0.001,0.001]))[0]==True:
            x0arr = kwargs.get('flines')[1]
            y0arr = kwargs.get('flines')[2]
            for i in range(np.size(x0arr)):
                flmhd = I.field_line(Dmhd.b1,Dmhd.b2,Dmhd.x1,Dmhd.x2,Dmhd.dx1,Dmhd.dx2,x0arr[i],y0arr[i])
                Qxmhd = flmhd.get('qx')
                Qymhd = flmhd.get('qy') 
                fl =I.field_line(Data.b1,Data.b2,Data.x1,Data.x2,Data.dx1,Data.dx2,x0arr[i],y0arr[i])
                Qx= fl.get('qx')
                Qy= fl.get('qy')
                plfl1= plt.plot(Qx,Qy,color=kwargs.get('colors','r'),ls=kwargs.get('ls','-'),lw=kwargs.get('lw',2.0))
                plfl2= plt.plot(Qx,-Qy,color=kwargs.get('colors','r'),ls=kwargs.get('ls','-'),lw=kwargs.get('lw',2.0))
                plfl1= plt.plot(Qxmhd,Qymhd,color=kwargs.get('colors','w'),ls=kwargs.get('ls','--'),lw=kwargs.get('lw',2.0))
                plfl2= plt.plot(Qxmhd,-Qymhd,color=kwargs.get('colors','w'),ls=kwargs.get('ls','--'),lw=kwargs.get('lw',2.0))
                
                

    if kwargs.get('fullsym',False) == True:
        ysymvar = np.flipud(var)
        plc1=plt.pcolormesh(-x1[::-1],x2,ysymvar.T,vmin=kwargs.get('vmin',np.min(var)),vmax=kwargs.get('vmax',np.max(var)))
        xsymvar = np.fliplr(var)
        plc2=plt.pcolormesh(x1,-x2[::-1],xsymvar.T,vmin=kwargs.get('vmin',np.min(var)),vmax=kwargs.get('vmax',np.max(var)))
        plc3=plt.pcolormesh(-x1,-x2,var.T,vmin=kwargs.get('vmin',np.min(var)),vmax=kwargs.get('vmax',np.max(var)))
        plc4=plt.pcolormesh(x1,x2,var.T,vmin=kwargs.get('vmin',np.min(var)),vmax=kwargs.get('vmax',np.max(var)))
        if kwargs.get('cbar',(False,''))[0] == True:
            plcol=plt.colorbar(orientation=kwargs.get('cbar')[1])
            
        if kwargs.get('arrows',(False,20))[0]==True:
            plq1=plt.quiver(-xmc,ymc,-v1cn,v2cn,color='w')
            plq2=plt.quiver(xmc,-ymc,v1cn,-v2cn,color='w')
            plq3=plt.quiver(xmc,ymc,v1cn,v2cn,color='w')
            plq4=plt.quiver(-xmc,-ymc,-v1cn,-v2cn,color='w')
            
        if kwargs.get('flines',(False,[2.0,4.0,7.0,13.0],[0.001,0.001,0.001,0.001]))[0]==True:
            x0arr = kwargs.get('flines')[1]
            y0arr = kwargs.get('flines')[2]
            for i in range(np.size(x0arr)):
                fl =I.field_line(Data.b1,Data.b2,Data.x1,Data.x2,Data.dx1,Data.dx2,x0arr[i],y0arr[i])
                Qx= fl.get('qx')
                Qy= fl.get('qy')
                plfl1=plt.plot(Qx,Qy,color=kwargs.get('colors','r'),ls=kwargs.get('ls','-'),lw=kwargs.get('lw',2.0))
                plfl2=plt.plot(-Qx,Qy,color=kwargs.get('colors','r'),ls=kwargs.get('ls','-'),lw=kwargs.get('lw',2.0))
                plfl3=plt.plot(Qx,-Qy,color=kwargs.get('colors','r'),ls=kwargs.get('ls','-'),lw=kwargs.get('lw',2.0))
                plfl4=plt.plot(-Qx,-Qy,color=kwargs.get('colors','r'),ls=kwargs.get('ls','-'),lw=kwargs.get('lw',2.0))
        
    
    return [plc1,plc2,plcol,plq1,plq2,plfl1,plfl2,plfl3,plfl4] 
Ejemplo n.º 44
0
def interpolate_sparse_vectors(x, y, u, v, domain_size, function="inverse",
                               k=20, epsilon=None, nchunks=5):
    
    """Interpolation of sparse motion vectors to produce a dense field of motion 
    vectors. 
    
    Parameters
    ----------
    x : array-like
        x coordinates of the sparse motion vectors
    y : array-like
        y coordinates of the sparse motion vectors
    u : array_like  
        u components of the sparse motion vectors
    v : array_like  
        v components of the sparse motion vectors
    domain_size : tuple
        size of the domain of the dense motion field [px]
    function : string
        the radial basis function, based on the Euclidian norm, d.
        default : inverse
        available : nearest, inverse, gaussian
    k : int or "all"
        the number of nearest neighbors used to speed-up the interpolation
        If set equal to "all", it employs all the sparse vectors
        default : 20
    epsilon : float   
        adjustable constant for gaussian or inverse functions
        default : median distance between sparse vectors
    nchunks : int
        split the grid points in n chunks to limit the memory usage during the 
        interpolation
        default : 5
    
    Returns
    -------
    X : array-like
        grid
    Y : array-like
        grid
    UV : array-like
        Three-dimensional array (2,domain_size[0],domain_size[1]) 
        containing the dense U, V motion fields.
    """
    
    testinterpolation = False
    
    # make sure these are vertical arrays
    x = x[:,None]
    y = y[:,None]
    u = u[:,None]
    v = v[:,None]
    points = np.column_stack((x, y))
    
    if len(domain_size)==1:
        domain_size = (domain_size, domain_size)
        
    # generate the grid
    xgrid = np.arange(domain_size[1])
    ygrid = np.arange(domain_size[0])
    X, Y = np.meshgrid(xgrid, ygrid)
    grid = np.column_stack((X.ravel(), Y.ravel()))
    
    U = np.zeros(grid.shape[0])
    V = np.zeros(grid.shape[0])
         
    # create cKDTree object to represent source grid
    if k is not "all":
        k = np.min((k, points.shape[0]))
        tree = scipy.spatial.cKDTree(points)
    
    # split grid points in n chunks
    subgrids = np.array_split(grid, nchunks, 0)
    subgrids = [x for x in subgrids if x.size > 0]
    
    # loop subgrids
    i0=0
    for i,subgrid in enumerate(subgrids):
    
        idelta = subgrid.shape[0]

        if function.lower() == "nearest":
        
            # find indices of the nearest neighbors
            _, inds = tree.query(subgrid, k=1)
        
            U[i0:(i0+idelta)] = u.flatten()[inds]
            V[i0:(i0+idelta)] = v.flatten()[inds]
        
        else:
            if k == "all":
                d = scipy.spatial.distance.cdist(points, subgrid, 'euclidean').transpose()
                inds = np.arange(u.size)[None,:]*np.ones((subgrid.shape[0],u.size)).astype(int)

            else: 
                # find indices of the k-nearest neighbors
                d, inds = tree.query(subgrid, k=k)
        
            # the bandwidth
            if epsilon is None:
                dpoints = scipy.spatial.distance.pdist(points, 'euclidean')
                epsilon = np.median(dpoints)
            
            # the interpolation weights
            if function.lower() == "inverse":
                w = 1.0/np.sqrt((d/epsilon)**2 + 1)
            elif function.lower() == "gaussian":
                w = np.exp(-0.5*(d/epsilon)**2)
            else:
                raise ValueError("unknown radial fucntion %s" % function)

            U[i0:(i0+idelta)] = np.sum(w * u.flatten()[inds], axis=1) / np.sum(w, axis=1)
            V[i0:(i0+idelta)] = np.sum(w * v.flatten()[inds], axis=1) / np.sum(w, axis=1)
               
        i0 += idelta
    
    # reshape back to original size
    U = U.reshape(domain_size[0], domain_size[1])
    V = V.reshape(domain_size[0], domain_size[1])
    UV = np.stack([U, V])
        
    if testinterpolation:
        import matplotlib.pylab as plt
        step=15
        UV_ = UV[:, 0:UV.shape[1]:step, 0:UV.shape[2]:step]
        X_ = X[0:UV.shape[1]:step, 0:UV.shape[2]:step]
        Y_ = Y[0:UV.shape[1]:step, 0:UV.shape[2]:step]                                                         
        plt.quiver(X_, np.flipud(Y_), UV_[0,:,:], -UV_[1,:,:])     
        plt.quiver(x, np.flipud(y), u, -v, color="red")
        plt.show()
    
    return X, Y, UV
Ejemplo n.º 45
0
def drainage_plot(
    mg,
    surface="topographic__elevation",
    receivers=None,
    proportions=None,
    surf_cmap="gray",
    quiver_cmap="viridis",
    title="Drainage Plot",
):

    if isinstance(surface, six.string_types):
        colorbar_label = surface
    else:
        colorbar_label = "topographic_elevation"
    imshow_grid(mg, surface, cmap=surf_cmap, colorbar_label=colorbar_label)

    if receivers is None:
        receivers = mg.at_node["flow__receiver_node"]
        if proportions is None:
            if "flow__receiver_proportions" in mg.at_node:
                proportions = mg.at_node["flow__receiver_proportions"]
    else:
        receivers = np.asarray(receivers)

    if receivers.ndim == 1:
        receivers = np.expand_dims(receivers, axis=1)

    nreceievers = receivers.shape[-1]

    propColor = plt.get_cmap(quiver_cmap)
    for j in range(nreceievers):
        rec = receivers[:, j]
        is_bad = rec == -1

        xdist = -0.8 * (mg.x_of_node - mg.x_of_node[rec])
        ydist = -0.8 * (mg.y_of_node - mg.y_of_node[rec])

        if proportions is None:
            proportions = np.ones_like(receivers, dtype=float)

        is_bad[proportions[:, j] == 0.0] = True

        xdist[is_bad] = np.nan
        ydist[is_bad] = np.nan

        prop = proportions[:, j] * 256.0
        lu = np.floor(prop)
        colors = propColor(lu.astype(int))

        shape = (mg.number_of_nodes, 1)

        plt.quiver(
            mg.x_of_node.reshape(shape),
            mg.y_of_node.reshape(shape),
            xdist.reshape(shape),
            ydist.reshape(shape),
            color=colors,
            angles="xy",
            scale_units="xy",
            scale=1,
            zorder=3,
        )

    # Plot differen types of nodes:
    o, = plt.plot(
        mg.x_of_node[mg.status_at_node == CORE_NODE],
        mg.y_of_node[mg.status_at_node == CORE_NODE],
        "b.",
        label="Core Nodes",
        zorder=4,
    )
    fg, = plt.plot(
        mg.x_of_node[mg.status_at_node == FIXED_VALUE_BOUNDARY],
        mg.y_of_node[mg.status_at_node == FIXED_VALUE_BOUNDARY],
        "c.",
        label="Fixed Gradient Nodes",
        zorder=5,
    )
    fv, = plt.plot(
        mg.x_of_node[mg.status_at_node == FIXED_GRADIENT_BOUNDARY],
        mg.y_of_node[mg.status_at_node == FIXED_GRADIENT_BOUNDARY],
        "g.",
        label="Fixed Value Nodes",
        zorder=6,
    )
    c, = plt.plot(
        mg.x_of_node[mg.status_at_node == CLOSED_BOUNDARY],
        mg.y_of_node[mg.status_at_node == CLOSED_BOUNDARY],
        "r.",
        label="Closed Nodes",
        zorder=7,
    )

    node_id = np.arange(mg.number_of_nodes)
    flow_to_self = receivers[:, 0] == node_id

    fts, = plt.plot(
        mg.x_of_node[flow_to_self],
        mg.y_of_node[flow_to_self],
        "kx",
        markersize=6,
        label="Flows To Self",
        zorder=8,
    )

    ax = plt.gca()

    ax.legend(
        labels=[
            "Core Nodes",
            "Fixed Gradient Nodes",
            "Fixed Value Nodes",
            "Closed Nodes",
            "Flows To Self",
        ],
        handles=[o, fg, fv, c, fts],
        numpoints=1,
        loc="center left",
        bbox_to_anchor=(1.7, 0.5),
    )
    sm = plt.cm.ScalarMappable(cmap=propColor, norm=plt.Normalize(vmin=0, vmax=1))
    sm._A = []
    cx = plt.colorbar(sm)
    cx.set_label("Proportion of Flow")
    plt.title(title)
Ejemplo n.º 46
0
    U[j,-1] = UVP[loc_glob[j*Nx+Nx-1,N]]
    V[j,-1] = UVP[loc_glob[j*Nx+Nx-1,N]+dofs]
    for i in range(Nx):
        #Leftmost point:
        U[-1,i] = UVP[loc_glob[Nx*(Ny-1)+i, N*(N-1)]]
        V[-1,i] = UVP[loc_glob[Nx*(Ny-1)+i, N*(N-1)]+dofs]

        #General point:
        U[j,i] = UVP[loc_glob[Nx*j+i,0]]
        V[j,i] = UVP[loc_glob[Nx*j+i,0]+dofs]

#Right- and topmost corner:
U[-1,-1] = UVP[loc_glob[-1,-1]]
V[-1,-1] = UVP[loc_glob[-1,-1]+dofs]

pl.quiver(X_el, Y_el, U, V, scale=10.0)
plt.plot( X_el[0, patches:(idim-patches)], Y_el[0, patches:(idim-patches)], 'b')


pl.xlabel('$x$')
pl.ylabel('$y$')
pl.axis('image')
'''
# PRESSURE PLOT:
plt.subplot(122)
ax = fig.add_subplot(122, projection='3d')
for K in range(num_el):
    ax.plot_wireframe( X[K, 1:-1, 1:-1], Y[K, 1:-1, 1:-1], UVP[loc_glob_p[K]+2*dofs].reshape((N-2,N-2)))
'''
pl.show()
Ejemplo n.º 47
0
"""
Plot of wind speed, wind vectors and surface pressure
By Richard Essery
"""
import numpy as np
import matplotlib.pylab as plt
plt.figure(figsize=(10, 10))

P = np.loadtxt('Psurf.txt')
U = np.loadtxt('Uwind.txt')
V = np.loadtxt('Vwind.txt')
W = np.sqrt(U**2 + V**2)

# wind speed as an image with a colour bar
plt.imshow(W, cmap='PuBu', origin='lower')
cbar = plt.colorbar(shrink=0.6)
cbar.set_label('wind speed (m s$^{-1}$)', fontsize=16, rotation=270)

# surface pressure as a contour plot with 4 hPa spacing
levels = 960 + 4*np.arange(20)
cs = plt.contour(P, colors='black', levels=levels)
plt.clabel(cs, fmt='%d')

# wind vectors
plt.quiver(U,V)

plt.xticks([])
plt.yticks([])
plt.show()
Ejemplo n.º 48
0
#   TIME TO SOLVE:
####################
print "Done solving..."
P = UVP[2*N**2:]
P = np.reshape ( P, (N-2,N-2) )
U1 = np.reshape ( U1, (N,N) )
U2 = np.reshape ( U2, (N,N) )

t2 = time.time()-t1
print "Total time: ", t2

############################
# PLOTTING THE SHIT:
############################
# Quiverplot
fig = plt.figure(1)
plt.subplot(121)
pl.quiver(X, Y, U1, U2, pivot='middle', headwidth=4, headlength=6)
pl.xlabel('$x$')
pl.ylabel('$y$')
pl.axis('image')


# Pressureplot
plt.subplot(122)
ax = fig.add_subplot(122, projection='3d')
ax.plot_wireframe(X_p, Y_p, P)#-np.sin(2*np.pi*(X**2 + Y**2)))
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.show()
Ejemplo n.º 49
0
		break
    print "Time to solve: ", time.time()-t1
    counter += 1
    print "error :                    ", error

################################
#       PLOTTING:
################################
# Making global X and Y coordinates


fig = plt.figure(1)
# QUIVERPLOT #
P = UVP[2*dofs:]
for i in range(num_el):
  X,Y = gh.gordon_hall_grid(gm.gammas(i,1),gm.gammas(i,2),gm.gammas(i,3),gm.gammas(i,4), xis, xis)
  plt.subplot(121)
  pl.quiver(X,Y, U1[loc_glob[i]].reshape( (N,N) ), U2[loc_glob[i]].reshape( (N,N) ))
  pl.xlabel('$x$')
  pl.ylabel('$y$')
  pl.axis('image')

# PRESSURE PLOT:
plt.subplot(122)
ax = fig.add_subplot(122, projection='3d')
for i in range(num_el):
  X,Y = gh.gordon_hall_grid(gm.gammas(i,1),gm.gammas(i,2),gm.gammas(i,3),gm.gammas(i,4), xis, xis)
  ax.plot_wireframe(X[1:-1,1:-1],Y[1:-1,1:-1], P[loc_glob_p[i]].reshape( (N-2,N-2)))

pl.show()
    else:
        return np.sum(x**2, axis=1)


def tangent_line(f, x):
    d = numerical_gradient(f, x)
    print(d)
    y = f(x) - d*x
    return lambda t: d*t + y
     
if __name__ == '__main__':
    x0 = np.arange(-2, 2.5, 0.25)
    x1 = np.arange(-2, 2.5, 0.25)
    X, Y = np.meshgrid(x0, x1)
    
    X = X.flatten()
    Y = Y.flatten()
    
    grad = numerical_gradient(function_2, np.array([X, Y]) )
    
    plt.figure()
    plt.quiver(X, Y, -grad[0], -grad[1],  angles="xy",color="#666666")#,headwidth=10,scale=40,color="#444444")
    plt.xlim([-2, 2])
    plt.ylim([-2, 2])
    plt.xlabel('x0')
    plt.ylabel('x1')
    plt.grid()
    plt.legend()
    plt.draw()
    plt.show()
Ejemplo n.º 51
0
    y = f(x) - d * x
    return lambda t: d * t + y  #lambda:引数で関数を返す


if __name__ == '__main__':  #気にしない
    x0 = np.arange(-2, 2, 0.25)
    x1 = np.arange(-2, 2, 0.25)
    X, Y = np.meshgrid(x0, x1)

    X = X.flatten()  #flatten:多次元配列を一次元に
    Y = Y.flatten()

    grad = numerical_gradient(function_2, np.array([X, Y]).T).T

    plt.figure()
    plt.quiver(X, Y, -grad[0], -grad[1], angles="xy", color="#666666")
    plt.xlim([-2, 2])
    plt.ylim([-2, 2])
    plt.xlabel('x0')
    plt.ylabel('x1')
    plt.grid()
    plt.draw()
    plt.show()

_______________________________________________________________________________

#勾配法
#勾配が最も小さくなる方向に少しずつ移動する:勾配降下法
#x=x-η*(∂f/∂x)
#η:学習率
#勾配降下法の実装
Ejemplo n.º 52
0
    for i in range(len(u[q])):
        if i == 0:
            levcoefs[i] += (u[q][i]**2 ).sum()
        else:
            for alpha in range(3):
                levcoefs[i] += (u[q][i][alpha]**2 ).sum()

#print levcoefs

from itertools import product
shape = im1.shape
xs = np.empty(shape + (2,))
for x0, x1 in product(range(shape[0]), range(shape[1])): 
    xs[x0,x1] = np.array([float(x0)/(shape[0]), float(x1)/shape[1]])
defmap = ag.ml.imagedefw.deform_map(xs, u)
face2 = ag.ml.imagedefw.deform(face, u)  

d = dict(origin='lower', interpolation='nearest', cmap=plt.cm.gray)
plt.figure(figsize=(9,9))
plt.subplot(221)
plt.imshow(face, **d)
plt.subplot(222)
plt.imshow(face2, **d)
plt.subplot(223)
plt.plot(levcoefs)
#plt.pcolor(u[1][0])
#plt.colorbar()
plt.subplot(224)
plt.quiver(xs[:,:,1], xs[:,:,0], defmap[:,:,1], defmap[:,:,0])
plt.show()
Ejemplo n.º 53
0
def singleVector():
   dx = 0.05
   x = np.arange(-1,1+dx,dx)
   y = np.arange(-1,1+dx,dx)
   X,Y = np.meshgrid(x,y)
   x2 = np.reshape(X,[-1])
   y2 = np.reshape(Y,[-1])
   xo = np.array([0.])
   yo = np.array([0.])
   uo = np.array([1.])
   vo = np.array([0.])
   ob = np.concatenate([uo,vo])
   ob = np.reshape(ob,[ob.size,1])
   
   K1 = sqExp(xo,xo,xo,xo,0.1)
   Ki1 = np.linalg.inv(K1)
   Ks1 = sqExp(x2,y2,xo,yo,0.1)
   u1 = np.dot(Ks1,np.dot(Ki1,uo)) 
   u1 = np.reshape(u1,[x.size,-1])
   v1 = np.dot(Ks1,np.dot(Ki1,vo)) 
   v1 = np.reshape(v1,[x.size,-1])

   K2 = compute_K(xo,xo,0.1,1)
   Ks2 = compute_Ks(xo,xo,x2,y2,0.1,1)
   Ki2 = np.linalg.inv(K2)
   f2 = getMean(Ks2,Ki2,ob)
   u2 = np.reshape(f2[0:f2.size/2],[x.size,-1])
   v2 = np.reshape(f2[f2.size/2:],[x.size,-1])

   K3 = compute_K(xo,xo,0.1,2)
   Ks3 = compute_Ks(xo,xo,x2,y2,0.1,2)
   Ki3 = np.linalg.inv(K3)
   f3 = getMean(Ks3,Ki3,ob)
   u3 = np.reshape(f3[0:f3.size/2],[x.size,-1])
   v3 = np.reshape(f3[f3.size/2:],[x.size,-1])

   figH = 20
   figW = 9.5
   bottom = [0.69,0.36,0.03]
   height = 0.27
   left = 0.085
   width = 0.88

   FS = 38
   FS2 = 32
   scal = 15.

   fig = pl.figure(figsize=(figW,figH))

   plot=fig.add_axes([left,bottom[0],width,height])
   cs=plot.quiver(x,y,u1,v1,scale=scal)
   pl.quiver(xo,yo,uo,vo,scale=scal,color='r')
   plot.tick_params(axis='both',which='major',labelsize=FS2)
   plot.set_title('Isotropic kernel',fontsize = FS)
   plot.set_xlim([-0.3,0.3])
   plot.set_ylim([-0.3,0.3])
   plot.set_xticks([-0.3,-0.2,-0.1,0.,0.1,0.2,0.3])
   plot.set_yticks([-0.2,-0.1,0.0,0.1,0.2])

   plot=fig.add_axes([left,bottom[1],width,height])
   cs=plot.quiver(x,y,u2,v2,scale=scal)
   pl.quiver(xo,yo,uo,vo,scale=scal,color='r')
   plot.tick_params(axis='both',which='major',labelsize=FS2)
   plot.set_title('Divergence-free kernel',fontsize = FS)
   plot.set_xlim([-0.3,0.3])
   plot.set_ylim([-0.3,0.3])
   plot.set_xticks([-0.3,-0.2,-0.1,0.,0.1,0.2,0.3])
   plot.set_yticks([-0.2,-0.1,0.0,0.1,0.2])

   plot=fig.add_axes([left,bottom[2],width,height])
   cs=plot.quiver(x,y,u3,v3,scale=scal)
   pl.quiver(xo,yo,uo,vo,scale=scal,color='r')
   plot.tick_params(axis='both',which='major',labelsize=FS2)
   plot.set_title('Curl-free kernel',fontsize = FS)
   plot.set_xlim([-0.3,0.3])
   plot.set_ylim([-0.3,0.3])
   plot.set_xticks([-0.3,-0.2,-0.1,0.,0.1,0.2,0.3])
   plot.set_yticks([-0.2,-0.1,0.0,0.1,0.2])

   pl.savefig('plots/one_obs.png', bbox_inches=0)
Ejemplo n.º 54
0
for i in xrange(Nres):
    for j in xrange(Nres):
        r = np.array([Xarray[i], Yarray[j]])
        phi2[i, j] = Phi(r, rp2, q2)
        E = Electric(r, rp2, q2)
        E2x[i, j], E2y[i, j] = E / np.linalg.norm(E)

# CONSTRUCCION DE CAMPO E Y POTENCIAL PHI, TOTAL
phi_tot = phi1 + phi2
# Incializacion Campo Electrico
Ex_tot = np.ones((Nres, Nres))
Ey_tot = np.ones((Nres, Nres))
# Calculo Potencial Electrico y Campo Electrico Total
for i in xrange(Nres):
    for j in xrange(Nres):
        E = np.array([E1x[i, j] + E2x[i, j], E1y[i, j] + E2y[i, j]])
        E = E / np.linalg.norm(E)
        Ex_tot[i, j], Ey_tot[i, j] = E

# Grafica de equipotenciales
plt.contour(X, Y, phi_tot, 100)
# Grafica de lineas de campo
plt.quiver(X, Y, Ey_tot, Ex_tot)

# Limites del eje X
plt.xlim((0, 10))
# Limites del eje Y
plt.ylim((0, 10))
plt.legend()
plt.show()
Ejemplo n.º 55
0
                        help='Which velocity field to plot.',
                        choices=['obstacle', 'goal', 'all'])
    args, unknown = parser.parse_known_args()

    fig, ax = plt.subplots()
    # Plot field.
    X, Y = np.meshgrid(np.linspace(-WALL_OFFSET, WALL_OFFSET, 30),
                       np.linspace(-WALL_OFFSET, WALL_OFFSET, 30))
    U = np.zeros_like(X)
    V = np.zeros_like(X)
    for i in range(len(X)):
        for j in range(len(X[0])):
            velocity = get_velocity(np.array([X[i, j], Y[i, j]]), args.mode)
            U[i, j] = velocity[0]
            V[i, j] = velocity[1]
    plt.quiver(X, Y, U, V, units='width')

    # Plot environment.
    ax.add_artist(plt.Circle(CYLINDER_POSITION1, CYLINDER_RADIUS,
                             color='gray'))
    ax.add_artist(plt.Circle(CYLINDER_POSITION2, CYLINDER_RADIUS,
                             color='gray'))
    plt.plot([-WALL_OFFSET, WALL_OFFSET], [-WALL_OFFSET, -WALL_OFFSET], 'k')
    plt.plot([-WALL_OFFSET, WALL_OFFSET], [WALL_OFFSET, WALL_OFFSET], 'k')
    plt.plot([-WALL_OFFSET, -WALL_OFFSET], [-WALL_OFFSET, WALL_OFFSET], 'k')
    plt.plot([WALL_OFFSET, WALL_OFFSET], [-WALL_OFFSET, WALL_OFFSET], 'k')

    # Plot a simple trajectory from the start position.
    # Uses Euler integration.
    dt = 0.01
    x = START_POSITION
Ejemplo n.º 56
0
def main():
    #import amitgroup.io.mnist
    #images, _ = read('training', '/local/mnist', [9]) 
    #shifted = np.zeros(images[0].shape)    
    #shifted[:-3,:] = images[0,3:,:]

    im1, im2 = np.zeros((32, 32)), np.zeros((32, 32))

    wl_name = "db2"
    levels = len(pywt.wavedec(range(32), wl_name)) - 1
    scriptNs = map(len, pywt.wavedec(range(32), wl_name, level=levels))

    if 0:
        images = np.load("data/nines.npz")['images']
        im1[:28,:28] = images[0]
        im2[:28,:28] = images[2]
    else:
        im1 = ag.io.load_image('data/Images_0', 45)
        im2 = ag.io.load_image('data/Images_1', 23)

    im1 = im1[::-1,:]
    im2 = im2[::-1,:]

    A = 2 
        
    if 1:
        # Blur images
        im1b = im1#ag.math.blur_image(im1, 2)
        im2b = im2#ag.math.blur_image(im2, 2)

        show_costs = True

        imgdef, info = ag.ml.imagedef(im1b, im2b, rho=3.0, calc_costs=show_costs)

        print info['iterations_per_level']

        if PLOT and show_costs:
            logpriors = -info['logpriors']
            loglikelihoods = -info['loglikelihoods']
            np.savez('logs', logpriors=logpriors, loglikelihoods=loglikelihoods)

            plotfunc = plt.semilogy
            plt.figure(figsize=(8,12))
            plt.subplot(211)
            costs = logpriors + loglikelihoods
            plotfunc(costs, label="J")
            plotfunc(loglikelihoods, label="log likelihood")
            plt.legend()
            plt.subplot(212) 
            plotfunc(logpriors, label="log prior")
            plt.legend()
            plt.show()

    
        im3 = imgdef.deform(im1)

        if PLOT:
            d = dict(origin='lower', interpolation='nearest', cmap=plt.cm.gray)

            plt.figure(figsize=(9,9))
            plt.subplot(221)
            plt.title("Prototype")
            plt.imshow(im1, **d)
            plt.subplot(222)
            plt.title("Original")
            plt.imshow(im2, **d) 
            plt.subplot(223)
            plt.title("Deformed")
            plt.imshow(im3, **d)
            
            plt.subplot(224)
            if 0:
                plt.title("Deformed")
                plt.imshow(im2-im3, **d)
                plt.colorbar()
            else:
                plt.title("Deformation map")
                x, y = imgdef.get_x(im1.shape)
                Ux, Uy = imgdef.deform_map(x, y) 
                plt.quiver(y, x, Uy, Ux)
            plt.show()

    elif 1:
        plt.figure(figsize=(14,6))
        plt.subplot(121)
        plt.title("F")
        plt.imshow(im1, origin='lower')
        plt.subplot(122)
        plt.title("I")
        plt.imshow(im2, origin='lower') 
        plt.show()


    import pickle
    if TEST:
        im3correct = pickle.load(open('im3.p', 'rb'))
        passed = (im3 == im3correct).all()
        print "PASSED:", ['NO', 'YES'][passed] 
        print ((im3 - im3correct)**2).sum()
    else:
        pickle.dump(im3, open('im3.p', 'wb'))
Ejemplo n.º 57
0
def drainage_plot(mg, 
                  surface='topographic__elevation', 
                  receivers=None, 
                  proportions=None, 
                  surf_cmap='gray',
                  quiver_cmap='viridis',
                  title = 'Drainage Plot'):
    

    if isinstance(surface, six.string_types):
        colorbar_label = surface
    else:
        colorbar_label = 'topographic_elevation'
    imshow_node_grid(mg, surface, cmap=surf_cmap, colorbar_label=colorbar_label)
    
    if receivers is None:
        try:
            receivers = mg.at_node['flow__receiver_nodes']
            if proportions is None:
                try:
                    proportions = mg.at_node['flow__receiver_proportions']
                except:
                    pass
        except: 
            receivers = np.reshape(mg.at_node['flow__receiver_node'],(mg.number_of_nodes,1))
        
    nreceievers = int(receivers.size/receivers.shape[0])
    
    propColor=plt.get_cmap(quiver_cmap)

    for j in range(nreceievers):
        rec = receivers[:,j]
        is_bad = rec == -1
        
        xdist =  -0.8*(mg.node_x-mg.node_x[rec])
        ydist =  -0.8*(mg.node_y-mg.node_y[rec])
        
        if proportions is None:
           proportions = np.ones_like(receivers, dtype=float)
        
        is_bad[proportions[:,j]==0.]=True
        
        xdist[is_bad] = np.nan
        ydist[is_bad] = np.nan
             
        prop = proportions[:,j]*256.
        lu = np.floor(prop)
        colors = propColor(lu.astype(int))
        
        shape = (mg.number_of_nodes, 1)
        
        plt.quiver(mg.node_x.reshape(shape), mg.node_y.reshape(shape), 
               xdist.reshape(shape), ydist.reshape(shape), 
               color=colors,
               angles='xy',
               scale_units='xy', 
               scale=1,
               zorder=3) 
    
    # Plot differen types of nodes:
    o, = plt.plot(mg.node_x[mg.status_at_node == CORE_NODE], mg.node_y[mg.status_at_node == CORE_NODE], 'b.', label='Core Nodes', zorder=4)
    fg, = plt.plot(mg.node_x[mg.status_at_node == FIXED_VALUE_BOUNDARY], mg.node_y[mg.status_at_node == FIXED_VALUE_BOUNDARY], 'c.', label='Fixed Gradient Nodes', zorder=5)
    fv, = plt.plot(mg.node_x[mg.status_at_node == FIXED_GRADIENT_BOUNDARY], mg.node_y[mg.status_at_node ==FIXED_GRADIENT_BOUNDARY], 'g.', label='Fixed Value Nodes', zorder=6)
    c, = plt.plot(mg.node_x[mg.status_at_node == CLOSED_BOUNDARY], mg.node_y[mg.status_at_node ==CLOSED_BOUNDARY], 'r.', label='Closed Nodes', zorder=7)

    node_id = np.arange(mg.number_of_nodes)
    flow_to_self = receivers[:,0]==node_id
                            
    fts, = plt.plot(mg.node_x[flow_to_self], mg.node_y[flow_to_self], 'kx', markersize=6, label = 'Flows To Self', zorder=8)
    
    ax = plt.gca()
    
    ax.legend(labels = ['Core Nodes', 'Fixed Gradient Nodes', 'Fixed Value Nodes', 'Closed Nodes', 'Flows To Self'],
              handles = [o, fg, fv, c, fts], numpoints=1, loc='center left', bbox_to_anchor=(1.7, 0.5))
    sm = plt.cm.ScalarMappable(cmap=propColor, norm=plt.Normalize(vmin=0, vmax=1))
    sm._A = []
    cx = plt.colorbar(sm)
    cx.set_label('Proportion of Flow')
    plt.title(title)
    plt.show()
Ejemplo n.º 58
0
import sympy as sp
import numpy as np
import matplotlib.pylab as plt

x, v = sp.symbols('x v')
f = sp.Function('f')(x, v)
expr = -x - v
f = sp.lambdify((x, v), expr)

x = np.linspace(-1, 1, 10)
v = np.linspace(-1, 1, 10)
x, v = np.meshgrid(x, v)

result = f(x, v)
scale = np.sqrt(1 / (v ** 2 + result ** 2))

plt.quiver(x, v, v * scale, result * scale)
plt.show()

Ejemplo n.º 59
0
def twoVectors(sigma = 0.2):
#
   figH = 18
   figW = 13
   bottom = [0.68,0.35,0.02]
   height = 0.3
   left = [0.07,0.56]
   width = 0.4

   FS = 42
   FS2 = 32

   scal = 25.
#
   dx = 0.05
   x = np.arange(-1,1+dx,dx)
   y = np.arange(-1,1+dx,dx)
   X,Y = np.meshgrid(x,y)
   Xs = np.reshape(X,[X.size])
   Ys = np.reshape(Y,[Y.size])   
# observation 1, at origin
   xo1 = 0.
   yo1 = 0.
   uo1 = 1.
   vo1 = 0.
# observation 2, varying direction, intensity and location
#   xo2 = np.array([0.07,0.14,0.28])
#   yo2 = np.array([0.07,0.14,0.28])
   xo2 = np.array([0.07,0.28])
   yo2 = np.array([0.07,0.28])
   angle = np.array([45,90,180])
   absVel = np.array([0.5,1,2])
#
   for i in range(angle.size):
      fig = pl.figure(figsize=(figW,figH))
      jk=1
      filename = 'plots/2_vectors_angle_'+str(angle[i])+'.png'
      for j in range(absVel.size):
         uo2 = absVel[j]*np.cos(np.deg2rad(angle[i]))   
         vo2 = absVel[j]*np.sin(np.deg2rad(angle[i]))   
         uo = np.array([uo1,uo2])
         vo = np.array([vo1,vo2])
         ob = np.concatenate([uo,vo])
         ob = np.reshape(ob,[ob.size,1])
         for k in range(xo2.size):
            xo = np.array([xo1,xo2[k]])
            yo = np.array([yo1,yo2[k]])
            # compute kernel    
            K = compute_K(xo,yo,sigma)
            Ki = np.linalg.inv(K)
            Ks = compute_Ks(xo,yo,Xs,Ys,sigma)
            f = getMean(Ks,Ki,ob)
            uf = np.reshape(f[:f.size/2],[y.size,-1])
            vf = np.reshape(f[f.size/2:],[y.size,-1])
            # plot
            print jk
            print i,j,k
#            plot = fig.add_subplot(3,3,jk)
            plot=fig.add_axes([left[k],bottom[j],width,height])
            plot.quiver(X,Y,uf,vf,scale=scal)
            pl.quiver(xo,yo,uo,vo,scale=scal,color='r')
            plot.set_xlim([-0.6,0.8])
            plot.set_ylim([-0.6,0.8])
            plot.set_xticks([-0.6,-0.3,0.,0.3,0.6])
            plot.set_yticks([-0.5,-0.2,0.1,0.4,0.7])

#            titleText = plot.text(0.7, 1.05, '',transform=plot.transAxes,
#                               fontsize=FS,fontweight='bold')
            titleText1 = plot.text(0.05, 0.9, '',transform=plot.transAxes,
                               fontsize=FS2,fontweight='bold',color='b')
            titleText2 = plot.text(0.03, 0.03, '',transform=plot.transAxes,
                               fontsize=FS2,fontweight='bold',color='b')
            titleText3 = plot.text(0.7, 0.03, '',transform=plot.transAxes,
                               fontsize=FS2,fontweight='bold',color='b')
            titleText3.set_text('$\Theta='+str(angle[i])+'$')
            titleText2.set_text('$|v_2|='+str(absVel[j])+'$')
            dx2= np.round(np.sqrt(np.square(xo1-xo2[k])+np.square(yo1-yo2[k])),decimals=2)
            titleText1.set_text('$|x_2-x_1|='+str(dx2)+'$')
            plot.tick_params(axis='both',which='major',labelsize=FS2)
            jk+=1
      pl.savefig(filename, bbox_inches=0)
Ejemplo n.º 60
0
def mag_forces(*args,**kwargs):
    Tool = plp.Tools()
    Fc = jana.Force()
    I = plp.Image()
    D = args[0]

    #Lorentz_Force_Dict = Fc.Lorentz(D)
    StForce_Dict = Fc.Pressure(D)

    
    Flr = StForce_Dict['Fp_r']
    Flz = StForce_Dict['Fp_z']
    
    #Flr = Lorentz_Force_Dict['Fl_r']
    #Flz = Lorentz_Force_Dict['Fl_z']
    
    spx= kwargs.get('spacingx',40)
    spy= kwargs.get('spacingx',80)
    nxr = D.n1/spx
    nyr = D.n2/spy
    nshape = ([nxr,nyr])

    b1new = Tool.congrid(D.b1,nshape) 
    b2new = Tool.congrid(D.b2,nshape)
    x1new = Tool.congrid(D.x1,([nxr]))
    x2new = Tool.congrid(D.x2,([nyr]))

    
 
    Flr_p = Tool.congrid(Flr,nshape)
    Flz_p = Tool.congrid(Flz,nshape)
    magpol_p = np.sqrt(Flr_p*Flr_p + Flz_p*Flz_p)


    #plt.quiver(x1new,x2new,(Flr_p/magpol_p).T,(Flz_p/magpol_p).T,color=kwargs.get('color','k'),headwidth=kwargs.get('hw',3))

    #FOR THE PARALLEL FORCES WE HAVE TO PROJECT THE Fl TO THE Bp
    if kwargs.get('Para',False)==True:
        phi = np.arctan2(b2new,b1new)
        f2 = plt.figure(num=2)
        
        theta = np.zeros(phi.shape)
        alpha = np.arctan2(Flz_p,Flr_p)

        

        for i in range(phi.shape[0]):
            for j in range(phi.shape[1]):
                if (alpha[i,j] > phi[i,j]):
                    theta[i,j] =  (alpha[i,j] - phi[i,j])
                else:
                    theta[i,j] =  2.0*np.pi + (alpha[i,j] - phi[i,j])


        magFlpara =  magpol_p*np.cos(theta)
        Flpara_r_p = magFlpara*np.cos(phi)
        Flpara_z_p = magFlpara*np.sin(phi)
        magFlpara_p = np.sqrt(Flpara_r_p*Flpara_r_p + Flpara_z_p*Flpara_z_p)
        
        f1 = plt.figure(num=1)
        ax1 = f1.add_subplot(111)
        ax1.set_aspect(1.0)
        plt.quiver(x1new,x2new,(Flpara_r_p/magFlpara_p).T,(Flpara_z_p/magFlpara_p).T,color=kwargs.get('color','k'),headwidth=kwargs.get('hw',5),width=kwargs.get('width',0.001),scale_units='xy')
        I.myfieldlines(D,[3.0,6.0,10.0,15.0],[0.01,0.01,0.01,0.01],stream=True,colors='k')

    #FOR THE PERPENDICULAR FORCES WE HAVE TO PROJECT THE Fl TO THE Bp
    if kwargs.get('Perp',False)==True:
        phi = np.arctan2(b2new,b1new)
        theta = np.zeros(phi.shape)
        Flper_r_p=np.zeros(phi.shape)
        Flper_z_p=np.zeros(phi.shape)
        magFlper=np.zeros(phi.shape)
        alpha = np.arctan2(Flz_p,Flr_p)


        for i in range(phi.shape[0]): 
            for j  in range(phi.shape[1]):
                if (alpha[i,j] > phi[i,j]):
                    theta[i,j] =  (alpha[i,j] - phi[i,j])
                    magFlper[i,j] = magpol_p[i,j]*np.sin(theta[i,j])
                    Flper_r_p[i,j] = -1.0*magFlper[i,j]*np.sin(phi[i,j])
                    Flper_z_p[i,j] = magFlper[i,j]*np.cos(phi[i,j])
                else: 
                    theta[i,j] =  2.0*np.pi + (alpha[i,j] - phi[i,j])
                    magFlper[i,j] = magpol_p[i,j]*np.sin(theta[i,j])
                    Flper_r_p[i,j] = -1.0*magFlper[i,j]*np.sin(phi[i,j])
                    Flper_z_p[i,j] = magFlper[i,j]*np.cos(phi[i,j])


        magFlper_p = np.sqrt(Flper_r_p*Flper_r_p + Flper_z_p*Flper_z_p)
        f1 = plt.figure(num=1)
        ax2 = f1.add_subplot(111)
        ax2.set_aspect(1.0)
                             
        plt.quiver(x1new,x2new,(Flper_r_p/magFlper_p).T,(Flper_z_p/magFlper_p).T,color=kwargs.get('color','k'),headwidth=kwargs.get('hw',5),width=kwargs.get('width',0.001),scale_units='xy')
        I.myfieldlines(D,[3.0,6.0,10.0,15.0],[0.01,0.01,0.01,0.01],stream=True,colors='k')