Ejemplo n.º 1
0
def triplot(x,y,z,r=0.001,title = 'band'):
#    z = c-c.min()
#    z /= z.max()
    triang = tri.Triangulation(x,y)
    xmid = x[triang.triangles].var(axis=1)
    ymid = y[triang.triangles].var(axis=1)
    mask = sp.where(xmid*xmid + ymid*ymid > r*r, 1, 0)
    triang.set_mask(mask)
    pl.figure()
    pl.gca().set_aspect('equal')
    pl.tricontourf(triang, z)
    pl.colorbar()
    V = sp.arange(-10,10,dtype=sp.double)/10*z.max()
    pl.tricontour(triang, z,V)#, colors='k')
    pl.title(title)
Ejemplo n.º 2
0
def triplot(x, y, z, r=0.001, title='band'):
    #    z = c-c.min()
    #    z /= z.max()
    triang = tri.Triangulation(x, y)
    xmid = x[triang.triangles].var(axis=1)
    ymid = y[triang.triangles].var(axis=1)
    mask = sp.where(xmid * xmid + ymid * ymid > r * r, 1, 0)
    triang.set_mask(mask)
    pl.figure()
    pl.gca().set_aspect('equal')
    pl.tricontourf(triang, z)
    pl.colorbar()
    V = sp.arange(-10, 10, dtype=sp.double) / 10 * z.max()
    pl.tricontour(triang, z, V)  #, colors='k')
    pl.title(title)
Ejemplo n.º 3
0
def freqtor(yr, mo, dy, hr, mn, sc, duration, ndays, datdir, freq1, freq2,
            thresholdv, deltaf, masktimes, madtimes, time_thres,
            distance_thres):

    #control plot behavior

    import matplotlib.pylab as plt
    plt.switch_backend("nbagg")
    plt.style.use('ggplot')
    plt.rcParams['figure.figsize'] = 18, 12  #width,then height
    plt.rcParams['savefig.dpi'] = 80
    from obspy import UTCDateTime
    import numpy as np
    import matplotlib.dates as mdates
    import matplotlib.tri as tri
    from obspy.signal.trigger import recursive_sta_lta as recSTALTA
    from obspy.signal.trigger import trigger_onset as triggerOnset
    import copy, os, bisect, scipy, datetime, itertools
    import pandas as pd
    #suppress the chained assignment warning
    pd.options.mode.chained_assignment = None
    from mpl_toolkits.basemap import Basemap
    from obspy.taup import TauPyModel as TauP
    model = TauP(model="iasp91")
    from obspy.geodetics import locations2degrees as loc2d
    import Util as Ut
    import geopy.distance as pydist
    from obspy.core import read
    #############################
    homedir = ''
    wb = 5  #which basin # are we working on for station list import
    maketemplates = 1
    tlength = 7200  #nsamples on either side of detection time for template
    counter = datetime.date(int(yr), int(mo), int(dy)).timetuple().tm_yday
    edgebuffer = 00
    duration = duration + edgebuffer
    #ndays= 2 #however many days you want to generate images for
    dayat = int(dy)
    #set parameter values; k = area threshold for detections:
    #thresholdv= 2.0
    #deltaf = 250.0
    nseconds = 7200
    npts = int(deltaf * (nseconds + edgebuffer))
    fftsize = 256
    overlap = 4
    hop = fftsize / overlap
    w = scipy.hanning(fftsize + 1)[:-1]
    #delta=250.0

    if duration == 86400:
        im = 12
    elif duration == 7200:
        im = 1
    else:
        im = 1

    #parse the datetime
    counter_3char = str(counter).zfill(3)
    datest = yr + str('-') + mo + str('-') + str(dayat) + str('T') + hr + str(
        ':') + mn + str('.') + sc
    tt = UTCDateTime(datest)

    #####################################################################
    # Now start making the detections, in 2 hour data chunks, 1 day at a time
    print(os.getcwd())
    for days in range(ndays):
        plt.close('all')
        print(str(tt))
        sacyear = str(tt.date.year)
        sacmonth = str(tt.date.month)
        sacday = str(tt.date.day)
        if len(sacmonth) == 1:
            sacmonth = str(0) + sacmonth
        if len(sacday) == 1:
            sacday = str(0) + sacday
        sacname = str(sacyear) + str(sacmonth) + str(sacday)
        sacdir = datdir + sacyear + sacmonth + sacday + '/' + sacname + '*.sac'
        #############################

        s = homedir + 'basin%s/' % wb + yr + str('_') + counter_3char
        if not os.path.exists(s):
            os.makedirs(s)
        sz = read(sacdir)
        sz.sort()
        sz.detrend()
        sz.trim(starttime=tt,
                endtime=tt + duration,
                pad=True,
                fill_value=000,
                nearest_sample=False)
        sz.filter('highpass', freq=1.0)

        alltimes = Ut.gettvals(sz[0], sz[1], sz[2])
        #############################
        #########################
        #%%
        nptsf = edgebuffer * deltaf
        blockette = 0
        d = {
            'Contributor': 'NA',
            'Latitude': 'NA',
            'Longitude': 'NA',
            'S1': 'NA',
            'S1time': 'NA',
            'Magnitude': -999.00,
            'mag_error': -999.00,
            'cent_er': -999.00,
            'Confidence': 0,
            'S2': 'NA',
            'S3': 'NA',
            'S4': 'NA',
            'S5': 'NA',
            'S2time': 'NA',
            'S3time': 'NA',
            'S4time': 'NA',
            'S5time': 'NA',
            'Type': 'Event'
        }
        index = [0]
        df1 = pd.DataFrame(data=d, index=index)
        stations, latitudes, longitudes, distances = [], [], [], []
        snames, latitudes, longitudes = [], [], []
        for i in range(len(sz)):
            snames.append(str(sz[i].stats.station))
            latitudes.append(sz[i].stats.sac['stla'])
            longitudes.append(sz[i].stats.sac['stlo'])
        latmin = min(latitudes)
        lonmin = max(longitudes)
        newlat = np.empty([len(snames)])
        newlon = np.empty([len(snames)])
        stations = copy.copy(snames)
        for i in range(len(snames)):
            reindex = stations.index(snames[i])
            newlat[i] = latitudes[reindex]
            newlon[i] = longitudes[reindex]
            distances.append(
                pydist.vincenty([newlat[i], newlon[i]],
                                [latmin, lonmin]).meters)
        #####this is where maths happends and arrays are created
        for block in range(im):
            print(blockette, tt)
            ll, lo, stalist, vizray, dist = [], [], [], [], []
            shorty = 0
            for z in range(len(snames)):
                szdata = sz[z].data[blockette:blockette + npts]
                # if len(szdata)==npts:
                vizray.append([])
                Bwhite = Ut.w_spec(szdata, deltaf, fftsize, freq1, freq2)
                vizray[shorty].append(np.sum(Bwhite[:, :], axis=0))
                ll.append(newlat[z])
                lo.append(newlon[z])
                dist.append(distances[z])
                stalist.append(snames[z])
                shorty = shorty + 1
            rays = np.vstack(np.array(vizray))
            ix = np.where(np.isnan(rays))
            rays[ix] = 0
            rayz = np.copy(rays)
            latudes = copy.copy(ll)
            longitudes = copy.copy(lo)
            slist = copy.copy(stalist)
            #sort the array orders by distance from lomin,latmin
            for i in range(len(slist)):
                junk = np.where(np.array(dist) == max(dist))
                rayz[i] = rays[junk[0][0]]
                ll[i] = latudes[junk[0][0]]
                lo[i] = longitudes[junk[0][0]]
                slist[i] = stalist[junk[0][0]]
                dist[junk[0][0]] = -9999999999
            timevector = Ut.getfvals(tt, Bwhite, nseconds, edgebuffer)

            #clean up the array
            rayz = Ut.saturateArray(rayz, masktimes)
            ix = np.where(np.isnan(rayz))
            rayz[ix] = 0

            #determine which level to use as detections 4* MAD
            levels = [Ut.get_levels(rayz, madtimes)]

            #get the ANF catalog events and get closest station

            localE, globalE, closesti = Ut.getCatalogData(tt, nseconds, lo, ll)

            #closesti = np.flipud(closesti)
            #unstructured triangular mesh with stations as verticies, mask out the long edges
            triang = tri.Triangulation(lo, ll)
            mask, edgeL = Ut.long_edges(lo, ll, triang.triangles)
            triang.set_mask(mask)
            kval = Ut.get_k(lo, ll, triang.triangles, thresholdv)

            #%%
            #get contour areas by frame
            av,aa,xc,yc,centroids,ctimes,ctimesdate,junkx,junky=[],[],[],[],[],[],[],[],[]
            for each in range(len(rayz[0, :])):
                #                refiner = tri.UniformTriRefiner(triang)
                #                tri_refi, z_refi = refiner.refine_field(rayz[0:,each], subdiv=0)
                cs = plt.tricontour(triang,
                                    rayz[0:, each],
                                    mask=mask,
                                    levels=levels,
                                    colors='c',
                                    linewidths=[1.5])
                contour = cs.collections[0].get_paths()
                for alls in range(len(contour)):
                    vs = contour[alls].vertices
                    a = Ut.PolygonArea(vs)
                    aa.append(a)
                    x = vs[:, 0]
                    y = vs[:, 1]
                    points = np.array([x, y])
                    points = points.transpose()
                    sx = sy = sL = 0
                    for i in range(
                            len(points)):  # counts from 0 to len(points)-1
                        x0, y0 = points[
                            i -
                            1]  # in Python points[-1] is last element of points
                        x1, y1 = points[i]
                        L = ((x1 - x0)**2 + (y1 - y0)**2)**0.5
                        sx += (x0 + x1) / 2 * L
                        sy += (y0 + y1) / 2 * L
                        sL += L
                    xc.append(sx / sL)
                    yc.append(sy / sL)
                if aa != []:
                    idi = np.where(np.array(aa) > kval)
                    filler = np.where(np.array(aa) <= kval)
                    chained = itertools.chain.from_iterable(filler)
                    chain = itertools.chain.from_iterable(idi)
                    idi = list(chain)
                    filler = list(chained)
                    for alls in range(len(aa)):
                        if aa[alls] > kval:
                            centroids.append([xc[idi[0]], yc[idi[0]]])
                            ctimes.append(timevector[each])
                            ctimesdate.append(timevector[each])
                            av.append(aa[idi[0]])
                        else:
                            centroids.append([0, 0])
                            ctimes.append(timevector[each])
                            ctimesdate.append(timevector[each])
                            av.append(0)

                aa, yc, xc = [], [], []
    #%%     Filter peaks in av above threshold by time and distance to remove redundant.
            idxx, idx, regionals, localev = [], [], [], []
            coordinatesz = np.transpose(centroids)
            avz = av
            abovek = np.where(np.array(avz) > 0)
            idxx = abovek[0]
            iii = []
            for i in range(len(abovek[0]) - 1):
                junk = ctimes[idxx[i + 1]] - ctimes[idxx[i]]
                junk1 = centroids[idxx[i]]
                junk2 = centroids[idxx[i + 1]]
                if junk.seconds < time_thres and pydist.vincenty(
                        junk2, junk1).meters < distance_thres:
                    iii.append(idxx[i + 1])

            idxx = set(idxx) - set(iii)
            idxx = list(idxx)
            idxx.sort()
            idx = idxx
            ltxlocal, ltxlocalexist = [], []
            ltxglobal = []
            ltxglobalexist = []
            doubles, localev = [], []
            dit2 = []
            #%%
            #if there are no picks but cataloged events exist, make null arrays
            if len(idx) == 0 and len(globalE) > 0:
                ltxglobalexist = np.ones(len(globalE))
            if len(idx) == 0 and len(localE) > 0:
                ltxlocalexist = np.ones(len(localE))
    #try to match detections with known catalog events based on time and location
            if len(idx) > 0:
                distarray = []
                dmin = np.zeros([5])
                dval = np.zeros([5])
                closestl = np.empty([len(idx), 5])
                dvals = np.empty([len(idx), 5])
                closestl = closestl.astype(np.int64)
                for i in range(len(idx)):
                    #find distance to the 5 nearest stations and save them for plotting templates
                    for each in range(len(ll)):
                        distarray.append(
                            pydist.vincenty([
                                coordinatesz[1][idx[i]],
                                coordinatesz[0][idx[i]]
                            ], [ll[each], lo[each]]).meters)
                    for all5 in range(5):
                        dmin[all5] = np.argmin(distarray)
                        dmin = dmin.astype(np.int64)
                        dval[all5] = distarray[dmin[all5]]
                        distarray[dmin[all5]] = 9e10
                    closestl[i][:] = dmin
                    dvals[i][:] = dval
                    dmin = np.zeros_like(dmin)
                    distarray = []
                    #get timeseries for this pick
                    stg = slist[closestl[i][0]]
                    timeindex = bisect.bisect_left(alltimes, ctimes[idx[i]])
                    sss = sz.select(station=stg)
                    av = sss[0].data[timeindex - tlength:timeindex + tlength]
                    cf = recSTALTA(av, int(40), int(1200))
                    peaks = triggerOnset(cf, 3, .2)
                    #get rid of peaks that are way off LTX times
                    peaksi = []
                    for peak in peaks:
                        peak = peak[0]
                        junk = alltimes[timeindex] - alltimes[timeindex -
                                                              tlength + peak]
                        if abs(junk.seconds) > 45:
                            peaksi.append(i)

                    peaks = np.delete(peaks, peaksi, axis=0)
                    #look for overlap with ANF global

                    for j in range(len(globalE)):
                        #get distance between stations and depth for theoretical ttime calc
                        # the time buffers are somewhat arbitrary
                        dep = globalE.depth[j]
                        dit = loc2d(centroids[idx[i]][1], centroids[idx[i]][0],
                                    globalE.Lat[j], globalE.Lon[j])
                        arrivals = model.get_travel_times(dep,
                                                          dit,
                                                          phase_list=['P'])
                        #if no calculated tt but sta/lta peak
                        if len(arrivals) == 0 and len(peaks) != 0:
                            junk = UTCDateTime(
                                alltimes[timeindex - tlength +
                                         peaks[0][0]]) - UTCDateTime(
                                             globalE.DateString[j])
                            if junk > -40 and junk < 40:
                                doubles.append(idx[i])
                                ltxglobal.append(
                                    UTCDateTime(alltimes[timeindex - tlength +
                                                         peaks[0][0]]))
                                ltxglobalexist.append(0)
                            else:
                                ltxglobalexist.append(1)
                        #if no calculated tt and no sta/lta peak use ltx time
                        elif len(arrivals) == 0 and len(peaks) == 0:
                            junk = UTCDateTime(
                                alltimes[timeindex]) - UTCDateTime(
                                    globalE.DateString[j])
                            if junk > -40 and junk < 40:
                                doubles.append(idx[i])
                                ltxglobal.append(
                                    UTCDateTime(alltimes[timeindex]))
                                ltxglobalexist.append(0)
                            else:
                                ltxglobalexist.append(1)
                        #if there are calculated arrivals and sta/lta peak
                        elif len(peaks) != 0:
                            junk = UTCDateTime(
                                alltimes[timeindex - tlength + peaks[0][0]]
                            ) - (UTCDateTime(globalE.DateString[j]) +
                                 datetime.timedelta(seconds=arrivals[0].time))
                            if junk > -30 and junk < 30:
                                doubles.append(idx[i])
                                ltxglobal.append(
                                    UTCDateTime(alltimes[timeindex - tlength +
                                                         peaks[0][0]]))
                                ltxglobalexist.append(0)
                            else:
                                ltxglobalexist.append(1)
                        #if there are calculated arrivals and no sta/lta peaks
                        else:

                            junk = UTCDateTime(alltimes[timeindex]) - (
                                UTCDateTime(globalE.DateString[j]) +
                                datetime.timedelta(seconds=arrivals[0].time))
                            if junk > -60 and junk < 60:
                                doubles.append(idx[i])
                                ltxglobalexist.append(0)
                            else:
                                ltxglobalexist.append(1)
                    #look for overlap with ANF local
                    if len(localE) > 0 and len(peaks) != 0:
                        for eachlocal in range(len(localE)):
                            #junk= UTCDateTime(alltimes[timeindex-tlength+peaks[0][0]]) - UTCDateTime(localE.DateString[eachlocal])
                            #took this out because faulty picks disassociated too many events
                            #calculate with LTX pick time instead
                            dep = localE.depth[eachlocal]
                            dit = pydist.vincenty(
                                [centroids[idx[i]][1], centroids[idx[i]][0]],
                                [localE.Lat[eachlocal], localE.Lon[eachlocal]
                                 ]).meters
                            junk = UTCDateTime(
                                alltimes[timeindex]) - UTCDateTime(
                                    localE.DateString[eachlocal])
                            if junk > -60 and junk < 60 and dit < 2.0 * edgeL:
                                localev.append(idx[i])
                                ltxlocal.append(
                                    UTCDateTime(alltimes[timeindex - tlength +
                                                         peaks[0][0]]))
                                ltxlocalexist.append(0)
                            else:
                                ltxlocalexist.append(1)
                    if len(localE) > 0 and len(peaks) == 0:
                        for eachlocal in range(len(localE)):
                            dep = localE.depth[eachlocal]
                            dit = pydist.vincenty(
                                [centroids[idx[i]][1], centroids[idx[i]][0]],
                                [localE.Lat[eachlocal], localE.Lon[eachlocal]
                                 ]).meters
                            junk = UTCDateTime(
                                alltimes[timeindex]) - UTCDateTime(
                                    localE.DateString[eachlocal])
                            if junk > -60 and junk < 60 and dit < 2.0 * edgeL:
                                localev.append(idx[i])
                                ltxlocal.append(
                                    UTCDateTime(alltimes[timeindex]))
                                ltxlocalexist.append(0)
                            else:
                                ltxlocalexist.append(1)
                #if it goes with a local- don't let it go with a double too
                dupe = []
                for dl in range(len(doubles)):
                    if localev.count(doubles[dl]) > 0:
                        dupe.append(doubles[dl])
                for repeats in range(len(dupe)):
                    doubles.remove(dupe[repeats])
    #
                detections = []
                detections = set(idx)  #-set(doubles)
                detections = list(detections)
                #or if there are more locals LTX detections than ANF locals, fix it
                #by assuming double pick on closest pair
                pdist = []
                if len(localev) > len(localE):
                    for i in range(len(localev) - 1):
                        pdist.append(localev[i + 1] - localev[i])
                        junk = np.where(pdist == min(pdist))
                    localev.pop(junk[0][0] + 1)
                    #detections.remove(localev[junk[0][0]+1])
                detections.sort()
                idx = detections
                dtype, cents = Ut.markType(detections, centroids, localev,
                                           localE, ctimes, doubles)
                #get the nearest station also for cataloged events
                closestd = np.zeros([len(doubles)])
                distarray = np.zeros([len(ll)])
                for event in range(len(doubles)):
                    for each in range(len(ll)):
                        distarray[each] = pydist.vincenty([
                            coordinatesz[1][doubles[event]],
                            coordinatesz[0][doubles[event]]
                        ], [ll[each], lo[each]]).meters

                    finder = np.argmin(distarray)
                    closestd[event] = finder
                    distarray[finder] = 9e10
                    closestd = closestd.astype(np.int64)

                closestp = []
                distarray = np.zeros([len(ll)])
                for event in range(len(localev)):
                    for each in range(len(ll)):
                        distarray[each] = pydist.vincenty([
                            coordinatesz[1][localev[event]],
                            coordinatesz[0][localev[event]]
                        ], [ll[each], lo[each]]).meters

                    finder = np.argmin(distarray)
                    closestp.append(finder)
                    distarray[finder] = 9e10

    #%%#save templates from this round of picks to verify on closest station
            ss = str(tt)
            ss = ss[0:13]
            if 'detections' in locals():
                index = range(len(detections))
            else:
                index = [0]
                detections = []
            df = pd.DataFrame(data=d, index=index)
            if maketemplates == 1 and len(detections) > 0:
                ptimes, confidence = [], []
                magi = np.zeros_like(dvals)
                dum = 0
                for fi in range(len(detections)):
                    if localev.count(detections[fi]) == 0:
                        df.Contributor[fi] = 'LTX'
                    else:
                        df.Contributor[fi] = 'ANF,LTX'
                        allmags = [
                            localE.ms[dum], localE.mb[dum], localE.ml[dum]
                        ]
                        df.Magnitude[fi] = np.max(allmags)
                        dum = dum + 1
                    #df.Latitude[fi] = coordinatesz[1][detections[fi]]
                    #df.Longitude[fi]=coordinatesz[0][detections[fi]]
                    df.Latitude[fi] = cents[fi][0]
                    df.Longitude[fi] = cents[fi][1]
                    df.Type[fi] = dtype[fi]
                    plt.cla()
                    ax = plt.gca()
                    timeindex = bisect.bisect_left(alltimes,
                                                   (ctimes[detections[fi]]))
                    sss = np.zeros([5, tlength * 2])
                    for stas in range(5):
                        stg = slist[closestl[fi][stas]]
                        tr = sz.select(station=stg)
                        if ctimes[detections[fi]] - datetime.timedelta(
                                seconds=80) < tt.datetime:
                            sss[stas][tlength:] = tr[0].data[
                                timeindex:timeindex + tlength]
                        elif ctimes[detections[fi]] + datetime.timedelta(
                                seconds=80) > tt.datetime + datetime.timedelta(
                                    seconds=nseconds + edgebuffer):
                            sss[stas][0:tlength] = tr[0].data[
                                timeindex - tlength:timeindex]
                        else:
                            sss[stas][:] = tr[0].data[timeindex -
                                                      tlength:timeindex +
                                                      tlength]
                    sss = np.nan_to_num(sss)
                    stg = slist[closestl[0][0]]
                    #plt.figure(fi)
                    peak = None
                    plt.suptitle('nearest station:' + stg + ' ' +
                                 str(ctimes[detections[fi]]) + 'TYPE = ' +
                                 dtype[fi])
                    for plots in range(5):
                        plt.subplot(5, 1, plots + 1)
                        cf = recSTALTA(sss[plots][:], int(80), int(500))
                        peaks = triggerOnset(cf, 3, .1)
                        peaksi = []
                        dummy = 0
                        for pk in peaks:
                            endi = pk[1]
                            peak = pk[0]
                            mcdur = alltimes[timeindex - tlength +
                                             endi] - alltimes[timeindex -
                                                              tlength + peak]
                            mdur = mcdur.total_seconds()
                            if alltimes[timeindex] > alltimes[timeindex -
                                                              tlength + peak]:
                                junk = alltimes[timeindex] - alltimes[
                                    timeindex - tlength + peak]
                            else:
                                junk = alltimes[timeindex - tlength +
                                                peak] - alltimes[timeindex]
                            if (junk.seconds) > 40:
                                peaksi.append(dummy)
                            dummy = dummy + 1
                        peaks = np.delete(peaks, peaksi, axis=0)

                        sss[plots] = np.nan_to_num(sss[plots])
                        #if the channel is blank underflow problems occur plotting station name
                        sss = np.round(sss, decimals=10)
                        plt.plot(
                            Ut.templatetimes(alltimes[timeindex], tlength,
                                             deltaf), sss[plots][:], 'black')
                        plt.axvline(x=alltimes[timeindex])
                        plt.text(alltimes[timeindex],
                                 0,
                                 slist[closestl[fi][plots]],
                                 color='red',
                                 fontsize=20)
                        plt.axis('tight')
                        for arc in range(len(peaks)):
                            plt.axvline(x=alltimes[timeindex - tlength - 10 +
                                                   peaks[arc][0]],
                                        color='orange')
                            plt.axvline(x=alltimes[timeindex - tlength - 10 +
                                                   peaks[arc][1]],
                                        color='purple')

                        if len(peaks) > 0:
                            ptimes.append(
                                UTCDateTime(alltimes[timeindex - tlength - 10 +
                                                     peaks[0][0]]))
                            confidence.append(len(peaks))
                            magi[fi][plots] = (
                                -2.25 + 2.32 * np.log10(mdur) +
                                0.0023 * dvals[fi][plots] / 1000)
                            #magi[fi][plots]=(1.86*np.log10(mdur)-0.85)
                        else:
                            ptimes.append(UTCDateTime(alltimes[timeindex]))
                            confidence.append(2)

                    magi = np.round(magi, decimals=2)
                    magii = pd.DataFrame(magi)
                    magu = magii[magii != 0]
                    if df.Contributor[fi] == 'ANF,LTX':
                        df.mag_error[fi] = np.round(np.max(allmags) -
                                                    np.mean(magu, axis=1)[fi],
                                                    decimals=2)
                        df.Magnitude[fi] = str(
                            str(df.Magnitude[fi]) + ',' +
                            str(np.round(np.mean(magu, axis=1)[fi],
                                         decimals=2)))
                        df.cent_er[fi] = np.round(pydist.vincenty([
                            coordinatesz[1][detections[fi]],
                            coordinatesz[0][detections[fi]]
                        ], [cents[fi][0], cents[fi][1]]).meters / 1000.00,
                                                  decimals=2)
                    else:
                        df.Magnitude[fi] = np.round(np.mean(magu, axis=1)[fi],
                                                    decimals=2)
                    #ptimes = np.reshape(ptimes,[len(ptimes)/5,5])
                    df.S1[fi] = slist[closestl[fi][0]]
                    df.S1time[fi] = ptimes[0]
                    df.S2[fi] = slist[closestl[fi][1]]
                    df.S2time[fi] = (ptimes[1])
                    df.S3[fi] = slist[closestl[fi][2]]
                    df.S3time[fi] = (ptimes[2])
                    df.S4[fi] = slist[closestl[fi][3]]
                    df.S4time[fi] = (ptimes[3])
                    df.S5[fi] = slist[closestl[fi][4]]
                    df.S5time[fi] = (ptimes[4])
                    #df.Confidence[fi]= confidence[0]
                    ptimes = []
                    if dtype[fi] == 'earthquake':
                        svname = homedir + str(s) + "/image" + ss[
                            11:13] + "_pick_" + str(fi + 1) + ".png"
                        plt.savefig(svname, format='png')
                    plt.clf()

    #%%
            df1 = [df1, df]
            df1 = pd.concat(df1)

            ################################################
            #%%

            fig = plt.figure()
            plt.cla()
            ax = plt.gca()
            #plot it all
            for i in range(len(detections)):

                if localev.count(detections[i]) == 1:
                    color = 'c'
                elif doubles.count(detections[i]) == 1:
                    color = 'blue'
                else:
                    color = 'white'
                if dtype[i] == 'blast':
                    facecolor = 'none'
                else:
                    facecolor = color
                plt.scatter(mdates.date2num(ctimes[detections[i]]),
                            closestl[i][0],
                            s=200,
                            color=color,
                            facecolor=facecolor)

    #
            for i in range(len(globalE)):
                plt.scatter(mdates.date2num(UTCDateTime(globalE.time[i])),
                            1,
                            s=100,
                            color='b',
                            alpha=.8)
            for i in range(len(localE)):
                plt.scatter(mdates.date2num(UTCDateTime(localE.time[i])),
                            closesti[i],
                            s=100,
                            facecolor='c',
                            edgecolor='grey')
            plt.imshow(np.flipud(rayz),
                       extent=[
                           mdates.date2num(tt.datetime),
                           mdates.date2num(
                               (tt + nseconds + edgebuffer).datetime), 0,
                           len(slist)
                       ],
                       aspect='auto',
                       interpolation='nearest',
                       cmap='bone',
                       vmin=np.min(rayz) / 2,
                       vmax=np.max(rayz) * 2)

            ax.set_adjustable('box-forced')
            ax.xaxis_date()
            plt.yticks(np.arange(len(ll)))
            ax.set_yticklabels(slist)
            tdate = yr + '-' + mo + '-' + str(dayat).zfill(2)
            plt.title(tdate)
            ax.grid(color='black')
            ss = str(tt)
            ss = ss[0:13]
            kurs = "%s/" % s + "%s.png" % ss
            svpath = homedir + kurs
            plt.savefig(svpath, format='png')
            plt.close()

            #%%
            blockette = blockette + (npts - nptsf)
            tt = tt + nseconds
            detections = []
            localev = []
            doubles = []
        #############################

        svpath = homedir + '%s' % s + "/picktable.html"
        df1.to_html(open(svpath, 'w'), index=False)
        svpath = homedir + '%s' % s + "/picktable.pkl"
        df1.to_pickle(svpath)
        dayat = dayat + 1
        counter = counter + 1
        counter_3char = str(counter).zfill(3)

        #############################

    if __name__ == '__main__':
        detection_function()
Ejemplo n.º 4
0
    def __call__(self):
        x1, x2, y1, y2, t = self.x1, self.x2, self.y1, self.y2, self.t
        p, tri = self.p, self.tri
        pp, dd, uu, vv = self.pp, self.dd, self.uu, self.vv
        Ibrief = self.Ibrief

        atm_units = 0  # False
        if np.max(pp) > 1.0e5:
            # change from Pascal units to 1 atm units
            atm_units = 1  # True
            p_1atm = 1.01325e5
            pp = pp / p_1atm

        # cell location (middle of the triangle)
        cell = (1.0 / 3.0) * (p[tri[:, 0]] + p[tri[:, 1]] + p[tri[:, 2]])

        # tricontour uses the pressure and density at the nodes, instead
        # of the calculated value of pp and dd in the cells, so we have
        # to assign a value to pressure and density to the nodes.

        # Sometimes, a few nodes do not appear in the triangulation
        # The pressure and density on these nodes will be defined as
        # the mean value of the pressure and density arrays. For normal
        # size meshes, this will not affect the visual plot
        ppp = np.zeros(len(p))
        ddd = np.zeros(len(p))
        pp_mean = np.mean(pp)
        dd_mean = np.mean(dd)
        for i in range(len(p)):
            ind0 = np.where(tri[:, 0] == i)
            ind1 = np.where(tri[:, 1] == i)
            ind2 = np.where(tri[:, 2] == i)
            aa = list(np.concatenate((ind0[0], ind1[0], ind2[0])))
            if len(aa):  # not empty
                ppp[i] = np.mean(pp[aa])
                ddd[i] = np.mean(dd[aa])
            else:  # node not in tri
                ppp[i] = pp_mean
                ddd[i] = dd_mean

        if Ibrief == 1:

            plt.figure()
            plt.subplot(2, 2, 1)
            plt.gca().set_aspect('equal')
            plt.tricontourf(p[:, 0], p[:, 1], tri, ppp, 256)
            plt.colorbar()
            if atm_units == 0:
                plt.title('PRESSURE')
            else:
                plt.title('PRESSURE [ATM]')
            plt.ylabel('y')

            plt.subplot(2, 2, 2)
            plt.gca().set_aspect('equal')
            plt.tricontourf(p[:, 0], p[:, 1], tri, ddd, 256)
            plt.colorbar()
            plt.title('DENSITY')
            plt.xlabel('x')

            plt.subplot(2, 2, 3)

            # --------------------------------
            #     u, v
            # --------------------------------
            xx = cell[:, 0]
            yy = cell[:, 1]
            uu_tri = uu[0:len(tri)]
            vv_tri = vv[0:len(tri)]

            # generate 100 points for (u,v) plot
            if len(xx) * len(yy) <= 100 or len(xx) < 10 or len(yy) < 10:
                plt.quiver(xx, yy, uu_tri, vv_tri)
                plt.axis('equal')
                plt.xlabel('velocity field')
                plt.show()
            else:
                mxx = np.zeros(100)
                myy = np.zeros(100)
                muu = np.zeros(100)
                mvv = np.zeros(100)

                ddx = 0.1 * (x2 - x1)
                ddy = 0.1 * (y2 - y1)
                n = 0

                for i in range(10):
                    for j in range(10):
                        ind = (xx > x1 + ddx * i) & (
                            xx <= x1 + ddx *
                            (i + 1)) & (yy > y1 + ddy * j) & (yy <= y1 + ddy *
                                                              (j + 1))
                        if np.any(ind == True):
                            mxx[n] = np.mean(xx[np.where(ind == True)])
                            myy[n] = np.mean(yy[np.where(ind == True)])
                            muu[n] = np.mean(uu_tri[np.where(ind == True)])
                            mvv[n] = np.mean(vv_tri[np.where(ind == True)])
                        else:
                            mxx[n] = x1 + 0.5 * ddx * (2 * i + 1)
                            myy[n] = y1 + 0.5 * ddy * (2 * j + 1)
                            muu[n] = 0.0
                            mvv[n] = 0.0
                        n += 1

                plt.quiver(mxx, myy, muu, mvv)
                plt.axis('equal')
                plt.xlabel('velocity field')

            ind = np.argmin(pp)
            pmin = pp[ind]
            # cell location (middle of the triangle)
            pmin_cell = (1.0 / 3.0) * (p[tri[ind, 0]] + p[tri[ind, 1]] +
                                       p[tri[ind, 2]])

            ind = np.argmax(pp)
            pmax = pp[ind]
            # cell location (middle of the triangle)
            pmax_cell = (1.0 / 3.0) * (p[tri[ind, 0]] + p[tri[ind, 1]] +
                                       p[tri[ind, 2]])

            ind = np.argmin(dd)
            dmin = dd[ind]
            # cell location (middle of the triangle)
            dmin_cell = (1.0 / 3.0) * (p[tri[ind, 0]] + p[tri[ind, 1]] +
                                       p[tri[ind, 2]])

            ind = np.argmax(dd)
            dmax = dd[ind]
            # cell location (middle of the triangle)
            dmax_cell = (1.0 / 3.0) * (p[tri[ind, 0]] + p[tri[ind, 1]] +
                                       p[tri[ind, 2]])

            plt.text(
                1.2 * x2, 0.8 * y2, 'max p = %g @ (%+5.2f,%+5.2f)' %
                (pmax, pmax_cell[0], pmax_cell[1]))
            plt.text(
                1.2 * x2, 0.6 * y2, 'min p = %g @ (%+5.2f,%+5.2f)' %
                (pmin, pmin_cell[0], pmin_cell[1]))
            plt.text(
                1.2 * x2, 0.4 * y2, 'max d = %g @ (%+5.2f,%+5.2f)' %
                (dmax, dmax_cell[0], dmax_cell[1]))
            plt.text(
                1.2 * x2, 0.2 * y2, 'min d = %g @ (%+5.2f,%+5.2f)' %
                (dmin, dmin_cell[0], dmin_cell[1]))
            plt.text(1.2 * x2, 0.0, 'simulation time t = %6.4f' % (t))
            plt.show()

        else:  # normal detailed separate plots

            # ------------------------------
            #       pressure
            # ------------------------------
            # method 1: almost continuous contour plot
            plt.figure()
            plt.gca().set_aspect('equal')
            plt.tricontourf(p[:, 0], p[:, 1], tri, ppp, 256)
            plt.colorbar()
            if atm_units == 0:
                plt.title('PRESSURE')
            else:
                plt.title('PRESSURE [ATM]')
            plt.xlabel('x')
            plt.ylabel('y')
            plt.show()

            # method 2: 30 contours
            plt.figure()
            plt.gca().set_aspect('equal')
            plt.tricontourf(p[:, 0], p[:, 1], tri, ppp, 30)
            plt.colorbar()
            if atm_units == 0:
                plt.title('PRESSURE')
            else:
                plt.title('PRESSURE [ATM]')
            plt.xlabel('x')
            plt.ylabel('y')
            plt.show()

            # method 3: just the contour lines
            plt.figure()
            plt.gca().set_aspect('equal')
            plt.tricontour(p[:, 0], p[:, 1], tri, ppp, 30)
            plt.colorbar()
            if atm_units == 0:
                plt.title('PRESSURE')
            else:
                plt.title('PRESSURE [ATM]')
            plt.xlabel('x')
            plt.ylabel('y')
            plt.show()

            # --------------------
            #    density
            # --------------------
            # method 1: almost continuous contour plot
            plt.figure()
            plt.gca().set_aspect('equal')
            plt.tricontourf(p[:, 0], p[:, 1], tri, ddd, 256)
            plt.colorbar()
            plt.title('DENSITY')
            plt.xlabel('x')
            plt.ylabel('y')
            plt.show()

            # method 2: 30 contours
            plt.figure()
            plt.gca().set_aspect('equal')
            plt.tricontourf(p[:, 0], p[:, 1], tri, ddd, 30)
            plt.colorbar()
            plt.title('DENSITY')
            plt.xlabel('x')
            plt.ylabel('y')
            plt.show()

            # method 3: just the contour lines
            plt.figure()
            plt.gca().set_aspect('equal')
            plt.tricontour(p[:, 0], p[:, 1], tri, ddd, 30)
            plt.colorbar()
            plt.title('DENSITY')
            plt.xlabel('x')
            plt.ylabel('y')

            # --------------------------------
            #     u, v
            # --------------------------------
            xx = cell[:, 0]
            yy = cell[:, 1]
            uu_tri = uu[0:len(tri)]
            vv_tri = vv[0:len(tri)]

            # generate 100 points for (u,v) plot
            if len(xx) * len(yy) <= 100 or len(xx) < 10 or len(yy) < 10:
                plt.figure()
                plt.quiver(xx, yy, uu_tri, vv_tri)
                plt.title('VELOCITY FIELD')
                plt.axis('equal')
                plt.xlabel('pixel # in x')
                plt.ylabel('pixel # in y')
                plt.show()
            else:
                mxx = np.zeros(100)
                myy = np.zeros(100)
                muu = np.zeros(100)
                mvv = np.zeros(100)

                ddx = 0.1 * (x2 - x1)
                ddy = 0.1 * (y2 - y1)
                n = 0

                for i in range(10):
                    for j in range(10):
                        ind = (xx > x1 + ddx * i) & (
                            xx <= x1 + ddx *
                            (i + 1)) & (yy > y1 + ddy * j) & (yy <= y1 + ddy *
                                                              (j + 1))
                        if np.any(ind == True):
                            mxx[n] = np.mean(xx[np.where(ind == True)])
                            myy[n] = np.mean(yy[np.where(ind == True)])
                            muu[n] = np.mean(uu_tri[np.where(ind == True)])
                            mvv[n] = np.mean(vv_tri[np.where(ind == True)])
                        else:
                            mxx[n] = x1 + 0.5 * ddx * (2 * i + 1)
                            myy[n] = y1 + 0.5 * ddy * (2 * j + 1)
                            muu[n] = 0.0
                            mvv[n] = 0.0
                        n += 1

                plt.figure()
                plt.quiver(mxx, myy, muu, mvv)
                plt.title('VELOCITY FIELD')
                plt.axis('equal')
                plt.xlabel('pixel # in x')
                plt.ylabel('pixel # in y')
                plt.show()

        return 0
Ejemplo n.º 5
0
import numpy as np
import matplotlib.pylab as pl

x = np.loadtxt('./data/x.txt')
y = np.loadtxt('./data/y.txt')
p = np.loadtxt('./data/p1.txt')
print(sum(p))
pl.figure()
pl.xlim((800, 1300))
pl.ylim((750, 1150))
pl.tricontourf(x, y, p, 300, cmap='hot')
pl.tricontour(x, y, p, 300, cmap='hot')
pl.colorbar()
pl.show()

p = np.loadtxt('./data/p2.txt')
print(sum(p))
pl.figure()
pl.xlim((800, 1300))
pl.ylim((750, 1150))
pl.tricontourf(x, y, p, 300, cmap='hot')
pl.tricontour(x, y, p, 300, cmap='hot')
pl.colorbar()
pl.show()
Ejemplo n.º 6
0
    # Create the Triangulation; no triangles so Delaunay triangulation created.
    triGrid = tri.Triangulation(x,y)
    # Mask off unwanted triangles.
    xyc,nl=readfile('data/cali.dat')
    xc = npy.array(column(xyc,0))
    yc = npy.array(column(xyc,1))
    xmid = x[triGrid.triangles].mean(axis=1)
    ymid = y[triGrid.triangles].mean(axis=1)
    mask = checkPtInside(xc,yc,xmid,ymid);
    #mask = npy.where(xmid*xmid + ymid*ymid < min_radius*min_radius, 1, 0)
    triGrid.set_mask(mask)
    for i in range(nspl):
        fig = plt.figure(figsize=(4,4))
        ax=fig.add_axes([0.08, 0.08, 0.9, 0.9]) 
        ax.set_aspect('equal')
        plt.tricontour(triGrid,column(din,i),21)
        ax.set_xlabel("lon",fontsize=fs1)
        ax.set_ylabel("lat",fontsize=fs1)
        ax.set_xlim([x.min(),x.max()])
        ax.set_ylim([y.min(),y.max()])
        ax.set_xticks([])
        ax.set_yticks([])
        #plt.colorbar()
        #plt.title("$c_l=$"+clen)
        plt.savefig("samples2Du_"+clen+"_"+nreal+"_s"+str(i+1)+".pdf")

if rtype == "anlcov2Du":
    fname = "klcov2Du_"+ctype+"_"+clen+"/cov2Du_"+ctype+"_"+clen+"_anl.dat"
    print "Processing file ",fname
    cov,nlines=readfile(fname);
    vmax = npy.array(cov).max()
Ejemplo n.º 7
0
 def createContour(self, data, value=None, col=None):
     """ calculation of a contour deom value : value[0] : min
     [1] : max, [2] nb contours, [3] decimals, [4] : 'lin', log' or 'fix',
     if [4]:fix, then [5] is the series of contours"""
     X, Y, Z = data
     #print 'visu controu',value,col
     self.cnv.collections = self.cnv.collections[:3]
     self.cnv.artists = []
     V = 11
     Zmin = amin(amin(Z))
     Zmax = amax(amax(Z * (Z < 1e5)))
     if Zmax == Zmin:  # test min=max -> pas de contour
         onMessage(self.gui, ' values all equal to ' + str(Zmin))
         return
     if value == None or len(value) < 4:
         value = [Zmin, Zmax, (Zmax - Zmin) / 10., 2, 'auto', []]
     # adapt the number and values of the contours
     val2 = [float(a) for a in value[:3]]
     if value[4] == 'log':  # cas echelle log
         n = int((log10(val2[1]) - log10(max(val2[0], 1e-4))) / val2[2]) + 1
         V = logspace(log10(max(val2[0], 1e-4)), log10(val2[1]), n)
     elif (value[4]
           == 'fix') and (value[5] != None):  # fixes par l'utilisateur
         V = value[5] * 1
         V.append(V[-1] * 2.)
         n = len(V)
     elif value[4] == 'lin':  # cas echelle lineaire
         n = int((val2[1] - val2[0]) / val2[2]) + 1
         V = linspace(val2[0], val2[1], n)
     else:  # cas automatique
         n = 11
         V = linspace(Zmin, Zmax, n)
     # ONE DIMENSIONAL
     if self.mesh == False:
         r, c = shape(X)
         if r == 1:
             X = concatenate([X, X])
             Y = concatenate([Y - Y * .45, Y + Y * .45])
             Z = concatenate([Z, Z])
     Z2 = ma.masked_where(Z.copy() > 1e5, Z.copy())
     #print value,n,V
     # definir les couleurs des contours
     if col == None or type(col) < type(
             5):  # or (col==[(0,0,0),(0,0,0),(0,0,0),10]):
         cmap = mpl.cm.jet
         col = [(0, 0, 255), (0, 255, 0), (255, 0, 0), 10]
     else:
         r, g, b = [], [], []
         lim=((0.,1.,0.,0.),(.1,1.,0.,0.),(.25,.8,0.,0.),(.35,0.,.8,0.),(.45,0.,1.,0.),\
              (.55,0.,1.,0.),(.65,0.,.8,0.),(.75,0.,0.,.8),(.9,0.,0.,1.),(1.,0.,0.,1.))
         for i in range(len(lim)):
             c1 = lim[i][1] * col[0][0] / 255. + lim[i][2] * col[1][
                 0] / 255. + lim[i][3] * col[2][0] / 255.
             r.append((lim[i][0], c1, c1))
             c2 = lim[i][1] * col[0][1] / 255. + lim[i][2] * col[1][
                 1] / 255. + lim[i][3] * col[2][1] / 255.
             g.append((lim[i][0], c2, c2))
             c3 = lim[i][1] * col[0][2] / 255. + lim[i][2] * col[1][
                 2] / 255. + lim[i][3] * col[2][2] / 255.
             b.append((lim[i][0], c3, c3))
         cdict = {'red': r, 'green': g, 'blue': b}
         cmap = mpl.colors.LinearSegmentedColormap('my_colormap', cdict,
                                                   256)
     if self.mesh == False:
         cf = pl.contourf(pl.array(X), pl.array(Y), Z2, V, cmap=cmap)
         c = pl.contour(pl.array(X), pl.array(Y), Z2, V, cmap=cmap)
     else:
         cf = pl.tricontourf(self.Triangles, Z2, V, cmap=cmap)
         c = pl.tricontour(self.Triangles, Z2, V, cmap=cmap)
     #print col[3]
     for c0 in cf.collections:
         c0.set_alpha(int(col[3]) / 100.)
         #print cl
     if value == None: fmt = '%1.3f'
     else: fmt = '%1.' + str(value[3]) + 'f'
     cl = pl.clabel(c, color='black', fontsize=9, fmt=fmt)
     self.Contour = c
     self.ContourF = cf
     self.ContourLabel = cl
     self.Contour.data = data
     self.redraw()