def fitPolyGrad(M, alpha, lrate): w = rnd.randn(M + 1) Ztrain = dataMatrix(Xtrain, M) errTrainList = [] errTestList = [] iList = 10**np.array([0, 1, 2, 3, 4, 5, 6, 7]) j = 0 plt.figure() plt.suptitle( 'Question 5(d): fitted polynomial as number of weight-updates increases' ) for i in range(10000000 + 1): grad = regGrad(Ztrain, Ytrain, w, alpha) w -= lrate * grad if np.mod(i, 1000) == 0: yhat = np.matmul(Ztrain, w) errTrain = np.sum((Ytrain - yhat)**2) / Ntrain errTrainList.append(errTrain) yhat = np.matmul(Ztrain, w) errTest = np.sum((Ytest - yhat)**2) / Ntest errTestList.append(errTest) if i == iList[j]: j += 1 plt.subplot(3, 3, j) plotPoly(w) if np.mod(i, 100000): print('iteration{}, Training error = {}'.format(i, errTrain)) plt.figure() plotPoly(w) plt.title('Question 5: fitted polynomial') plt.xlabel('x') plt.ylabel('y') plt.figure() plt.plot(errTrainList, 'b') plt.plt(errTestList, 'r') plt.title('Question 5: training and test error v.s. time') plt.xlabel('Number of iterations (in thousands)') plt.ylabel('Error') print('') print('Final training and test errors: ') print(' {}, {}'.format(errTrain, errTest)) print('') print('Final weight vector: ') print(w)
def changeCandle(): plt.clf() if candleType == "1H": ax1 = plt.subplot2grid((6, 1), (0, 0), rowspan=5, colspan=1) ax2 = plt.subplot2grid((6, 1), (5, 0), rowspan=1, colspan=1, sharex=ax1) plt.setp(ax1.get_xticklabels(), visible=False) df_ohlc = df_segment["Close"] df_volume = df_segment["Volume To"].resample(candleType).sum() df_ohlc.reset_index(inplace=True) df_ohlc["Date"] = df_ohlc["Date"].map(mdates.date2num) ax1.xaxis_date() # show mdates as readable normal date plt.plt(ax1) ax2.fill_between(df_volume.index.map(mdates.date2num), df_volume.values, 0, facecolors=volumeColor) fig.canvas.draw() else: ax1 = plt.subplot2grid((6, 1), (0, 0), rowspan=5, colspan=1) ax2 = plt.subplot2grid((6, 1), (5, 0), rowspan=1, colspan=1, sharex=ax1) plt.setp(ax1.get_xticklabels(), visible=False) df_ohlc = df_segment["Close"].resample(candleType).ohlc() df_volume = df_segment["Volume To"].resample(candleType).sum() df_ohlc.reset_index(inplace=True) df_ohlc["Date"] = df_ohlc["Date"].map(mdates.date2num) ax1.xaxis_date() # show mdates as readable normal date candlestick_ohlc(ax1, df_ohlc.values, width=candleWidth, colorup=lightColor, colordown=darkColor) ax2.fill_between(df_volume.index.map(mdates.date2num), df_volume.values, 0, facecolors=volumeColor) fig.canvas.draw()
def show(self, first_ascan=0, last_ascan=None): """" if absolute == True: Returns depth profile; otherwise just Fourrier transform """ if last_ascan == None: last_ascan = len(self.fourrier_data) if isinstance(self.fourrier_data[0], int) or isinstance( self.fourrier_data[0], float): plt.figure() plt.plt(self.fourrier_data) plt.title(self.name) else: plt.figure() plt.imshow(np.rot90(self.fourrier_data), cmap="gray") plt.clim([0, 10000]) plt.axis("tight") plt.title(self.name)
def L_Layer_model(X,Y,layer_dims,learning_rate=0.0075,num_iterations,print_cost): costs = [] parameters = initialize_parameters_deep(layers_dims) for i in range(0,num_iterations): AL, caches = L_model_forward(X, parameters) cost = compute_cost(AL,Y) grads = L_model_backward(AL,Y, caches) parameters = update_parameters(parameters,grads, learning_rate) if print_cost and i%100 == 0: print("Cost after iteration %i:%f"%(i,cost)) if i%100 == 0: costs.append(cost) plt.plt(costs) plt.ylabel('cost') plt.xlabel('iteration') plt.title("learning_rate = " + str(learning_rate)) plt.show() return parameters
def plot(self,X,y,kind='scatter',subPlots=True): X = _check_dataFrame(X) if(subPlots!=True): fig = plt.plt(X,y) self.fig_list.append(fig) else: #plot in different figure fig = plt.figure() for i in xrange(X.shape[1]): df = X[[X.columns[i]]] plt.plot(df,y,"*") self.fig_list.append(fig)
def plott(f,l,r): if(dir==0): if(n==1): n=0 else: z=y+15 if(l<30): plt.plt([x-l,x-l],[y,z]) if(r<30): plt.plot([x+r,x+r],[y,z]) if(f<30): plt.plot([x-l,x+r],[z,z]) y=z if(dir==1): if(n==1): n=0 else: z=x-15 if(l<30): plt.plt([z,x],[y-l,y-l]) if(r<30): plt.plot([z,x],[y+r,y+r]) if(f<30): plt.plot([x-f,x-f],[y-l,y+r]) x=z if(dir==2): if(n==1): n=0 else: z=y-15 if(l<30): plt.plt([x+l,x+l],[y,z]) if(r<30): plt.plot([x-r,x-r],[y,z]) if(f<30): plt.plot([x+l,x-r],[z,z]) y=z if(dir==3): if(n==1): n=0 else: z=x+15 if(l<30): plt.plt([z,x],[y+l,y+l]) if(r<30): plt.plot([z,x],[y-r,y-r]) if(f<30): plt.plot([x+f,x+f],[y+l,y-r]) x=z
def animate(frame): data = open(str(pathlib.Path(__file__).parent.absolute())+"\Data.txt","r").read().split('\n') if frame <= len(data): data = data[0:frame] for i in data: if i != '': i = i.split() if i[0] == 'o': x = [float(j) for j in re.findall(r'[-]?\d+\.\d+|[-]?\d+', i[1]+i[2])] y = [float(j) for j in re.findall(r'[-]?\d+\.\d+|[-]?\d+', i[3]+i[4])] plt(x, y, marker = 'o', color = 'b') elif i[0] == 'l': x = [float(j) for j in re.findall(r'[-]?\d+\.\d+|[-]?\d+', i[1]+i[2])] y = [float(j) for j in re.findall(r'[-]?\d+\.\d+|[-]?\d+', i[3]+i[4])] plt(*dl(x[0], x[1], y[0], y[1]), marker = 'o', color = 'g') elif i[0] == 'p': x, y = re.findall(r'[-]?\d+\.\d+|[-]?\d+', i[1]), re.findall(r'[-]?\d+\.\d+|[-]?\d+', i[2]) plt(float(x[0]), float(y[0]), marker = 'o', color = 'r') elif i[0] == 'c': x, y = re.findall(r'[-]?\d+\.\d+|[-]?\d+', i[1]), re.findall(r'[-]?\d+\.\d+|[-]?\d+', i[2]) r = re.findall(r'[-]?\d+\.\d+|[-]?\d+', i[3]) c = opt.Circle((float(x[0]), float(y[0])), float(r[0]), color = 'b', fill = False) opt.gca().add_artist(c)
""" 5. Explain what the following code block is doing, line by line. """ import matplotlib.pyplot as plt from __future__ import division ads['ctr'] = ads['clicks'] / ads['impressions'] fig = plt.figure() plt.subplot(1, 2, 1) plt.hist(ads.spend) plt.subplot(1, 2, 2) plt.plt(ads.spend, ads.ctr, 'g.') plt.show() """ 6-8. Imagine we're viewing the following coefficient table for the following regression: (ad_id1772 is either 1 or 0, meaning it was ad 1772, or it was not) 'spend ~ impressions + clicks + ad_id1772' column coefficient pvalue y_intercept 0.02 0.000 impressions 0.00057 0.038 clicks 0.976 0.78 ad_id1772 -0.5 0.02
plt.legend() plt.show() # Plots the density of each temporal Graph plt.plot(range(len(strong_componet_sizes)), densities) plt.xlabel('Days') plt.ylabel('Density') plt.show() ##################################################################################### # Repeat the step above for the average clustering coefficent of each G_t. # # TODO: # # What do you observe? What does an increasing (similary, decreasing) trend of # # clustering coefficients mean for changes to the structure of the network over # # time. # ##################################################################################### # Plots the average clustering coeifecints for each temporal graph. plt.plt(range(len(strong_componet_sizes)), clusterings) plt.xlabel('Days') plt.ylabel('Clustering') plt.show() ##################################################################################### # TODO Extra Credit: # # Given G, identify time points 2 <= phi <= T such that G_p differs signifigantly # # from G_p-1. Your approach should rank the time points in descending order of # # Signifigance in the identified change between graph snapshots. You may use any # # algorithm in the literature (in which case proper citation is required to # # recognize the author(s) of the algorithm), or develop an algorithm of your own # #####################################################################################
from conversions import dm2dd site = 'AG01' # get data [lati, loni, on, bd] = getemolt_latlon(site) # extracts lat/lon based on site code [lati, loni] = dm2dd(lati, loni) #converts decimal-minutes to decimal degrees dept = [0, 5] (obs_dt, obs_temps, obs_salt) = getobs_tempsalt( site, input_time=[dt.datetime(2006, 9, 10), dt.datetime(2006, 9, 11)], dep=dept) dept = [bd[0] - 0.25 * bd[0], bd[0] + 0.25 * bd[0]] (obs_dt, obs_tempb, obs_salt) = getobs_tempsalt( site, input_time=[dt.datetime(2006, 9, 10), dt.datetime(2006, 9, 11)], dep=dept) # get model for k in range(44): modtso = getFVCOM_bottom_tempsalt_netcdf(lati, loni, dt.datetime(2006, 9, 10), dt.datetime(2006, 9, 11), layer=k, vname='temp') plt.plot(modtso[0], -k, 'g*') plt.plt([obs_temps[0], obs_tempb[0]], [0, -bd[0]], 'r*')
dl_2.train(x=x, y=y, training_frame=data_training) dl_3 = dl_250 = H2ODeepLearningEstimator(hidden=[11, 13, 17, 19], checkpoint=dl_1, epochs=250, activation="rectifier", loss="crossentropy") dl_3.train(x=x, y=y, training_frame=data_training, validation_frame=data_testing) target_names = ['class 0', 'class 1'] pred = dl_2.predict(data_testing[0:-1]).as_data_frame(use_pandas=True) #rf_perf1 = dl_1.model_performance(data_testing) #rf_perf2 = dl_2.model_performance(data_testing) #rf_perf3 = dl_3.model_performance(data_testing) #print("Predictions:",pred) #print("Perfromance on test",rf_perf1) #print("Perfromance on test",rf_perf2) #print("Perfromance on test",rf_perf3) #pred=dl_2.predict(data_testing).as_data_frame(use_pandas=True) print("Pred", pred) np.savetxt("/Users/bonythomas/test.csv", pred, delimiter=",") plt(type='roc', train=False, show=True) #print ("AUC on Test:",rf_perf1.auc()) #print ("AUC on Test:",rf_perf2.auc()) #print ("AUC on Test:",rf_perf3.auc())
def display(x, y): plt.plt(x, y) plt.show()
import matplotlib.pyplot as plt fig, ax1 = plt.subplots() times = range(7) co2 = 250, 256, 272, 260, 300, 320, 389 ax1.plot(times, co2, "b--") ax1.set_ylabel('[$CO_2$]') ax2 = ax1.twinx() temp = [14.1, 15.5, 16.3, 18.1, 17.3, 19.1, 20.2] ax2.set_ylabel("Temp (degC)") plt.show() #ex2 plt.subplot(1, 3, 1) x = range(0, 10, 1) plt.plot(x) plt.subplot(1, 3, 2) y = range(10, 0, -1) plt.plt(y)
import matplotlib.pyplot as plt year = [2000, 2001, 2002, 2003, 2004, 2005] size = [5, 8, 10, 11, 12, 17] plt.plt(year, size) plt.show()
### 使用lambda时 elif需要多个if else嵌套 df['col1'] = df['col1'].apply(lambda x:1 if x=='HS' else (2 if x=='C' else 3)) ### 如何使用col2更新col1 ### 举例:当col1包含abc时,col2为0,注意col1为None时不更新 第一个参数可以更新为其他条件 比如 df['col1']==2 df.loc[df['col1'].str.contains('abc',na=False), 'col2'] = 0 # groupby语法 指定需要聚合的列 以及聚合过程中是否需要丢弃聚合列对应的空值 groupby = df.groupby(by=['colA','colB'],dropna=True) #返回一个groupby 对象 df1 = groupby.sum() #后面加聚合函数 返回dataframe 对象 # 取消索引 注意这里要把函数返回再赋给df df = df.reset_index() # plot结果,可以选择绘图类型 修改画布大小 df.plot(kind='bar',figsize=(15,10)) # 用bar的另外一种形式 df.plot.bar(x='col1',y='col2',figsize=(15,10)) # 简单plot两列 x = df['a'] y = df['b'] plt.plt(x,y) #dataframe如何转化为numpy array numpy_array = df.iloc[:,:6].to_numpy().reshape(4,5) #numpy array转化为series 注意numpy array要转化成一维 series = pd.Series(numpy_array) #series转化为dataframe frame = { 'name1': series1, 'name2': series } df = pd.DataFrame(frame)
#!/usr/bin/env python from matplotlib.pyplot import plt plt([1,2,3]) show()
def train(): if args.dataset == 'COCO': if args.dataset_root == VOC_ROOT: if not os.path.exists(COCO_ROOT): parser.error('Must specify dataset_root if specifying dataset') print("WARNING: Using default COCO dataset_root because " + "--dataset_root was not specified.") args.dataset_root = COCO_ROOT cfg = coco dataset = COCODetection(root=args.dataset_root, transform=SSDAugmentation( cfg['min_dim'], MEANS)) elif args.dataset == 'VOC': if args.dataset_root == COCO_ROOT: parser.error('Must specify dataset if specifying dataset_root') cfg = voc dataset = VOCDetection(root=args.dataset_root, transform=SSDAugmentation( cfg['min_dim'], MEANS)) if args.visdom: import visdom global viz viz = visdom.Visdom() print(viz) build_net = build_ssd if args.model == 'ssd300': build_net = build_ssd elif args.model == 'ssd300_fpn38': build_net = build_ssd300_fpn38 elif args.model == 'ssd300_fpn75': build_net = build_ssd300_fpn75 elif args.model == 'ssd300_fpn150': args.batch_size = 16 build_net = build_ssd300_fpn150 cfg['max_iter'] = 240000 cfg['lr_steps'] = (160000, 200000, 240000) print(cfg['max_iter']) print(cfg['lr_steps']) ssd_net = build_net('train', cfg['min_dim'], cfg['num_classes']) net = ssd_net print(net) if args.cuda: net = torch.nn.DataParallel(ssd_net) cudnn.benchmark = True if args.resume: print('Resuming training, loading {}...'.format(args.resume)) ssd_net.load_weights(args.resume) else: vgg_weights = torch.load(args.save_folder + args.basenet) print('Loading base network...') ssd_net.vgg.load_state_dict(vgg_weights) if args.cuda: net = net.cuda() if not args.resume: print('Initializing weights...') # initialize newly added layers' weights with xavier method print('~~~~~~~', weights_init) #ssd_net.SElayers.apply(weights_init) if 'fpn' in args.model: ssd_net.Fusion_Ups.apply(weights_init) ssd_net.Fusion_Lefts.apply(weights_init) ssd_net.extras.apply(weights_init) ssd_net.loc.apply(weights_init) ssd_net.conf.apply(weights_init) optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) criterion = MultiBoxLoss(cfg['num_classes'], 0.5, True, 0, True, 3, 0.5, False, args.cuda) net.train() # loss counters loc_loss = 0 conf_loss = 0 epoch = 0 print('Loading the dataset...') epoch_size = len(dataset) // args.batch_size print('Training ' + args.model + ' on:', dataset.name) print('Using the specified args:') print(args) step_index = 0 # add more boxes if args.visdom: vis_title = 'SSD.PyTorch on ' + dataset.name vis_legend = ['Loc Loss', 'Conf Loss', 'Total Loss'] iter_plot = create_vis_plot('Iteration', 'Loss', vis_title, vis_legend) epoch_plot = create_vis_plot('Epoch', 'Loss', vis_title, vis_legend) data_loader = data.DataLoader(dataset, args.batch_size, num_workers=args.num_workers, shuffle=True, collate_fn=detection_collate, pin_memory=True) # create batch iterator batch_iterator = iter(data_loader) pbar = tqdm(total=cfg['max_iter'], unit='iters', ncols=100) pbar.update(args.start_iter) loss_history = [] for iteration in range(args.start_iter, cfg['max_iter']): if args.visdom and (iteration % epoch_size == 0): epoch += 1 update_vis_plot(epoch, loc_loss, conf_loss, iter_plot, epoch_plot, 'append', epoch_size) # reset epoch loss counters loc_loss = 0 conf_loss = 0 if iteration in cfg['lr_steps']: step_index += 1 adjust_learning_rate(optimizer, args.gamma, step_index) # load train data try: images, targets = next(batch_iterator) except StopIteration: batch_iterator = iter(data_loader) images, targets = next(batch_iterator) if args.cuda: images = Variable(images.cuda()) targets = [Variable(ann.cuda()) for ann in targets] else: images = Variable(images) targets = [Variable(ann) for ann in targets] # forward t0 = time.time() out = net(images) # backprop optimizer.zero_grad() loss_l, loss_c = criterion(out, targets) loss = loss_l + loss_c loss.backward() optimizer.step() t1 = time.time() loc_loss += loss_l.data.item() conf_loss += loss_c.data.item() pbar.set_postfix({'loss': '%.2f' % (loss.item())}) pbar.update() loss_history.append(loss.item()) # if iteration % 1 == 0: # print('timer: %.4f sec.' % (t1 - t0)) # print('iter ' + repr(iteration) + ' || Loss: %.4f ||' % (loss.item()), end=' ') if args.visdom: update_vis_plot(iteration, loss_l.data[0], loss_c.data[0], iter_plot, epoch_plot, 'append') if iteration != 0 and iteration % 5000 == 0: print('Saving state, iter:', iteration) torch.save( ssd_net.state_dict(), 'weights/' + args.model + '_' + repr(iteration) + '.pth') pbar.close() torch.save( ssd_net.state_dict(), args.save_folder + '' + args.dataset + '_' + args.model + '.pth') history = {'loss': loss_history} file_name = args.model + '_history.pkl' with open(file_name, 'wb') as f: pickle.dump(history, f) f.close() plt.plt(loss_history) plt.show()
import pandas as pd from sklearn import linear_model import matplotlib.pyplot as plt # read data dataframe = pd.read_fwf('brain_body.txt') x_values = dataframe[['Brain']] y_values = dataframe[['Body']] # train model on data body_reg = linear_model.LinearRegression() body_reg.fit(x_values, y_values) # visualize results plt.scatter(x_values, y_values) plt.plt(x_values, body_reg.predict(x_values)) plt.show()
#build the look up table I = np.zeros([256, 2]) for i in range(256): I[i] = np.min( np.argwhere(Cu_hist_2 - Cu_hist[i] == np.min(abs(Cu_hist_2 - Cu_hist[i]))))[0][0] #plot plot plot! plt.figure(1, figsize=(9, 9)) plt.subplot(321) plt.plot(hist) plt.title('Histogram of first image') plt.subplot(322) plt.plot(Cu_hist) plt.title('Cumulative Histogram of first image') plt.subplot(323) plt.plot(hist_2) plt.title('Histogram of second image') plt.subplot(324) plt.plot(Cu_hist_2) plt.title('Cumulative Histogram of second image') plt.subplot(325) plt.plt(I) plt.title('The look up table I') plt.show()
from matplotlib import pyplot as plt # y = input("y를 입력해주세요: ") # a = input("a를 입력해주세요: ") # x = input("x를 입력해주세요: ") # b = input("b를 입력해주세요: ") hello_world = plt.plot([0, 10], [0, 2]) hello_world2 = plt.plt([0, 10], [0, 2]) plt.show((hello_world), (hello_world2))
# In[34]: """ 5. Explain what the following code block is doing, line by line. """ import matplotlib.pyplot as plt #import matplotlib stuff from __future__ import division #getting functions from python 3 ads['ctr'] = ads['clicks'] / ads[ 'impressions'] #add a column whose values are clicks/impressions fig = plt.figure() plt.subplot(1, 2, 1) # sets up 2 spots to put plots in one row plt.hist(ads.spend) # plots a histogram of ads.spend plt.subplot(1, 2, 2) # moving onto the second plot plt.plt(ads.spend, ads.ctr, 'g.') #this gives an error so i don't know plt.show() #shows both plots on the grid # In[ ]: """ 6-8. Imagine we're viewing the following coefficient table for the following regression: (ad_id1772 is either 1 or 0, meaning it was ad 1772, or it was not) 'spend ~ impressions + clicks + ad_id1772' column coefficient pvalue y_intercept 0.02 0.000 impressions 0.00057 0.038 clicks 0.976 0.78 ad_id1772 -0.5 0.02
plt.plot(linear_data, '-o') #multiplots linear_data=np.array([1,2,3,4,5,6,7,8]) exponential_data = linear_data**2 plt.subplot(1,2,2) plt.plot(linear_data, '-o') plt.subplot(1,2,1) plt.plot(linear_data, '-x') plt.figure() ax1 = plt.subplot(1,2,1) plt.plot(linear_data, '-o') ax2 = plt.subplot(1,2,2, sharey=ax1) plt.plt(explonential_data, '-x') #subplots parameters plt.figure() plt.subplot(1,2,1) == plt.subplot(121) fig, ((ax1,ax2,ax3), (ax4, ax5, ax5), (ax7,ax8,ax9)) = plt.subplots(3,3,sharex=True,sharey=True) ax5.plot(linear_data, '-') for ax in plt.gcf().get_axes(): for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_visible(True) plt.gcf().canvas.draw() #plot a histogram
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False fig = plt.figure() ax = fig.add_subplot(1, 1, 1) data = pd.read_excel( 'C:\\Users\Administrator\Desktop\macroeconomics\\GDP.xlsx', index_col=0) ticks = ax.set_xticks([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 ]) labels = ax.set_xticklabels([ '1992', '1993', '1994', '1995', '1996', '1997', '1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019' ], rotation=40, fontsize='small') ax.set_title(('中国国内生产总值')) ax.set_xlabel('年份') ax.set_ylabel('市值(亿元人民币)') plt.plt(data) plt.show()
expr = x * x + x * y + x * y + y * y res = expr.subs({x: 1, y: 2}) r = expr.subs({x: 1 - y}) #print(r) import sympy as sym from sympy import Symbol from sympy import pprint import sympy.plotting as syp sigma = Symbol('sigma') mu = Symbol('mu') #pprint(2*sym.pi*sigma) gauss_function = 1 / sym.sqrt(2 * sym.pi * sigma) gauss_function.subs({mu: 0, sigma: 1}) #print(gauss_function) part_1 = 1 / (sym.sqrt(2 * sym.pi * sigma**2)) part_2 = sym.exp(-1 * ((x - mu)**2) / (2 * sigma**2)) #pprint(1/(sym.sqrt(2*sym.pi*sigma**2))) my_gauss_f = part_1 * part_2 syp.plot(my_gauss_f.subs({mu: 1, sigma: 3}), (x, -10, 10), title='gauss') x_values = [] y_values = [] for value in range(-5, 5): y = my_gauss_f.subs({mu: 10, sigma: 30, x: value}) y_values.append(y) x_values.append(value) print(x, y) import matplotlib.pyplot as plt plt.plt(x_values, y_values)
def scatter_plot(self, clf, X, Y): '''回帰直線を描画する''' # 散布図 plt.scatter(X, Y) # 回帰直線 plt.plt(X, clf.predict(X))
# coding: utf-8 import numpy as np import matplotlib.pyplot as plt from astropy.io import fits hdus = fits.open('UGC11680NED01.p_e.rad_SFH_lum_Mass.fits.gz') img = hdus[0].data plt.imshow(img) img = hdus[0].data plt.imshow(img) plt.clf() plt.imshow(img, origin = 'lower') img.shape img.min() mass= img[0,:].cumsum() plt.figure() plt.plt(mass) plt.plot(mass) mass= img[1,:].cumsum() plt.plot(mass) mass= img[2,:].cumsum() plt.plot(mass) mass= img[4,:].cumsum() plt.plot(mass) mass= img[5,:].cumsum() plt.plot(mass) mass= img[6,:].cumsum() plt.plot(mass) mass= img[7,:].cumsum() plt.plot(mass) mass= img[8,:].cumsum() plt.plot(mass)
# coding: utf-8 import numpy as np x = np.linspace(0, 100, 10000) y = np.sin(x) + np.sin(3 * x) + np.sin(5 * x) import matplotlib.pyplot as plt plt.plot(y) plt.show() # fft Y = np.fft.fft(y) plt.plt(np.abs(Y)) plt.plpt(np.abs(Y)) plt.plot(np.abs(Y)) plt.show() 2 * np, pi * 16 / 100 2 * np.pi * 16 / 100 2 * np.pi * 48 / 100 2 * np.pi * 80 / 100
weak_componet_sizes.append( len(max(nx.weakly_connected_components(G_t), key=len))) densities.append(nx.density(G_t)) clusterings.append(nx.average_clustering(G_t)) ##################################################################################### # Plot the evoultion of the size of the largest connected componet (both in the weak# # and the strong sense) as a function of time (mesaured in days). In a separte # # figure, plot the density of each G_t, over t. # # TODO: # # Do you observe a "densification law" or an "undensification" trend? # ##################################################################################### # Plots the stong and weak compnent sizes for each temporal graph plt.plt(range(len(strong_componet_sizes)), weak_componet_sizes, label='Weakly Connected Componet') plt.plt(range(len(strong_componet_sizes)), strong_componet_sizes, label='Strongly Connected Componet') plt.xlabel('Days') plt.ylabel('Largest Componet Size') plt.legend() plt.show() # Plots the density of each temporal Graph plt.plt(range(len(strong_componet_sizes)), densities) plt.xlabel('Days') plt.ylabel('Density') plt.show()
#Getting Silhouette with squared euclidean distance for k value ranging from 2 to 8 TotalSED = [] for player in player_name: features = transform_data.where(transform_data["player_name"] == player[0]).select("features") for k in range(2,8): kmeans = KMeans(featuresCol = 'features', k=k) model = kmeans.fit(features) predictions = model.transform(features) silhouette = evaluator.evaluate(predictions) print("With K={}".format(k)) print("Silhouette with squared euclidean distance = " + str(silhouette)) TotalSED.append(silhouette) break #plotting kvalues and Total_SED plt.plt(range(2,9), TSED); plt.xlabel("No_of_Clusters"); plt.ylabel("Total_SED"); plt.xticks(k) #ESTABLISH MODEL WITH KMEANS kmeans = KMeans().setK(4).setSeed(1) model = kmeans.fit(training_set) # Make predictions predictions = model.transform(training_set) # Evaluate clustering by computing Silhouette score evaluator = ClusteringEvaluator() silhouette = evaluator.evaluate(predictions) print("Silhouette with squared euclidean distance = " + str(silhouette)) # Shows the result.
G_losses.append(errG.item()) D_losses.append(errD.item()) if (iters % 500 == 0) or ((epoch == num_epochs - 1) and (i == len(dataloader) - 1)): with torch.no_grad(): fake = netG(z).detach().cpu() img_list.append(vutils.make_grid(fake, padding=2, normalize=True)) iters += 1 ## show training scalars to plt plt.figure(figsize=(10, 5)) plt.title("GEnerator and Discriminator Loss DUring Training") plt.plt(G_losses, label='G') plt.plt(D_loosses, label='D') plt.xlabel("iterations") plt.ylabel("loss") plt.legend() plt.imshow() ## animation result #import matplotlib.animation as animation #from IPython.display import HTML fig = plt.figure(figsize=(8, 8)) plt.axis("off") ims = [[plt.imshow(np.transpose(i, (1, 2, 0)), animated=True)] for i in img_list]
# -*- coding: utf-8 -*- """ Created on Mon Mar 25 13:20:47 2013 Routine to look at model temperature profiles ar a particular eMOLT location where we had both surf & bot sensors @author: jmanning """ import datetime as dt from matplotlib import pyplot as plt from getdata_yw import getobs_tempsalt from getdata import getemolt_latlon from models_yw import getFVCOM_bottom_tempsalt_netcdf from conversions import dm2dd site='AG01' # get data [lati,loni,on,bd]=getemolt_latlon(site)# extracts lat/lon based on site code [lati,loni]=dm2dd(lati,loni)#converts decimal-minutes to decimal degrees dept=[0,5] (obs_dt,obs_temps,obs_salt)=getobs_tempsalt(site, input_time=[dt.datetime(2006,9,10),dt.datetime(2006,9,11)], dep=dept) dept=[bd[0]-0.25*bd[0],bd[0]+0.25*bd[0]] (obs_dt,obs_tempb,obs_salt)=getobs_tempsalt(site, input_time=[dt.datetime(2006,9,10),dt.datetime(2006,9,11)], dep=dept) # get model for k in range(44): modtso=getFVCOM_bottom_tempsalt_netcdf(lati,loni,dt.datetime(2006,9,10),dt.datetime(2006,9,11),layer=k,vname='temp') plt.plot(modtso[0],-k,'g*') plt.plt([obs_temps[0],obs_tempb[0]],[0,-bd[0]],'r*')
""" 5. Explain what the following code block is doing, line by line. """ import matplotlib.pyplot as plt ## import matplotlib into the namespace from __future__ import division ## import the python 3 division module ads['ctr'] = ads['clicks'] / ads['impressions'] ## create a new column that shows click per impression fig = plt.figure() ## create a plot object plt.subplot(1, 2, 1) ## define the first subplot of a 1x2 plot plt.hist(ads.spend) ## create a histogram using the data in the spend column plt.subplot(1, 2, 2) ## define the second subplot plt.plt(ads.spend, ads.ctr, 'g.') ## create a scatter plot of spend vs ctr, colored green plt.show() ## display the figure """ 6-8. Imagine we're viewing the following coefficient table for the following regression: (ad_id1772 is either 1 or 0, meaning it was ad 1772, or it was not) 'spend ~ impressions + clicks + ad_id1772' column coefficient pvalue y_intercept 0.02 0.000 impressions 0.00057 0.038 clicks 0.976 0.78 ad_id1772 -0.5 0.02
# set_voltage = 0.12*np.sin(2*current_power/np.pi) set_voltage = 2 * current_power if set_voltage > MAX_VOLTAGE: set_voltage = MAX_VOLTAGE supply.set_voltage(set_voltage) n -= 60 / 0.2 if n == (2 * 60 * 60 / 0.2 - 60 / 0.2): siggen.dcoffset(SET_POINT) print('PID loop started') sleep(0.2) current_power = meter.read_power() error = current_power - TARGET_POINT p_value = KP * error integrator = integrator + error i_value = -integrator * KI d_value = KD * (error - difference) pid = SET_POINT + p_value + i_value # + d_value print(current_power, pid, p_value, i_value) siggen.dcoffset(pid) x.append(time()) y.append(current_power) p.append(pid) n -= 1 plt.plot(x, y, label='Power') plt.plt(x, p, label='PID') plt.show()
plt.gca().invert_xaxis() plt.title('SFR Surface Dencity Image') plt.subplot(222) plt.imshow(Zvel, interpolation = 'nearest') plt.gca().invert_xaxis() plt.title('Galaxy Surface Dencity Image') plt.subplot(223) plt.semilogy( psd1D ) plt.title('SFR Surface Dencity Image') plt.subplot(224) plt.semilogy( psd1Dden ) plt.title('Galaxy Surface Dencity Image') #plt.tight_layout() plt.figure(2) plt.clf() plt.semilogy(xps) plt.title('cross power specturm') plt.show() delta = str(delta) savetext(folder,("SFR_Surface_Dencity_"+delta+"_binsize.csv"),Z) savetext(folder,"Galaxy_Surface_Dencity"+delta+"_binsize.csv",Zden) plt.plot(Z.flatten(), Zvel.flatten(), 'kx') plt.plt(x,y) plt.show()
def train(self, data, all_y_trues): """ - data is a (n x 2) numpy array, n = # samples in the dataset. - all_y_trues is a numpy with n elements. Elements in all_y_trues correspond to those indata. """ learn_rate = 0.1 epochs = 1000 loss_f = np.zeros((epochs, 1)) for epoch in range(epochs): for x, y_true in zip(data, all_y_trues): #---Do a feedforward (we'll need values later) sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1 h1 = sigmoid(sum_h1) sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2 h2 = sigmoid(sum_h2) sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3 o1 = sigmoid(sum_o1) y_pred = o1 #--- Calculate partial derivatives. #--- Naming: d_L_d_w1 represents "partial L/partial w1" d_L_d_ypred = -(y_true - y_pred) #Neuron o1 d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1) d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1) d_ypred_d_b3 = deriv_sigmoid(sum_o1) d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1) d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1) #Neuron h1 d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1) d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1) d_h1_d_b1 = deriv_sigmoid(sum_h1) #Neuron h2 d_h1_d_w3 = x[0] * deriv_sigmoid(sum_h2) d_h1_d_w4 = x[0] * deriv_sigmoid(sum_h2) d_h1_d_b2 = deriv_sigmoid(sum_h2) #--- update weights and biases #Neuron o1 self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5 self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6 self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3 #Neuron h1 self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1 self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2 self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1 #Neuron h2 self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3 self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4 self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h1_d_b2 #--- Calculate total loss at the end of each epoch y_preds = np.apply_along_axis(self.feedforward, 1, data) loss = mse_loss(all_y_trues, y_preds) loss_f[epoch] = loss if epoch % 10 == 0: print("Epoch %d loss: %.3f", (epoch, loss)) #fig,ax = plt.subplots() plt.plt(loss_f) plt.title('loss_function') plt.show()