Ejemplo n.º 1
0
 def f(x, interp_mode):
     xgr = xg.ravel()
     ygr = yg.ravel()
     if interp_mode == 'linear':
         interp = LinearTriInterpolator(triang, x)
     else:
         interp = CubicTriInterpolator(triang, x)
     return interp(xgr, ygr).reshape(grid_pts)
Ejemplo n.º 2
0
def plot_GRAD(UC,
              nodes,
              elements,
              Ngra,
              plt_type="contourf",
              levels=12,
              savefigs=False,
              title="Solution:"):
    """Plots the gradient of a user defined scalar field using triangulation.

    Parameters
    ----------
    UC : ndarray (float)
      Array with the scalar field.
    nodes : ndarray (float)
      Array with number and nodes coordinates:
        `number coordX coordY`
    elements : ndarray (int)
      Array with the node number for the nodes that correspond to each
      element.

    """
    tri = mesh2tri(nodes, elements)
    tcu = CubicTriInterpolator(tri, UC)
    (DuDx, DuDy) = tcu.gradient(tri.x, tri.y)
    tri_plot(tri,
             DuDx,
             Ngra,
             title=r'$\frac{{\partial }}{{\partial x}}$',
             figtitle="x gradient",
             levels=levels,
             plt_type=plt_type,
             savefigs=savefigs,
             filename="dudx.pdf")
    tri_plot(tri,
             DuDy,
             Ngra,
             title=r'$\frac{{\partial }}{{\partial y}}$',
             figtitle="y gradient",
             levels=levels,
             plt_type=plt_type,
             savefigs=savefigs,
             filename="dudy.pdf")
    return DuDx, DuDy
    def _setup_Te_interpolator(self, kind='linear'):
        """setup interpolator for measured Te

        :param string kind: default is 'linear', can be 'cubic' or 'linear'
        """
        self._Delaunay = Delaunay(self._points)
        self._triangulation = triangulation.Triangulation(
            self._Y, self._X, triangles=self._Delaunay.simplices)
        self._trifinder = DelaunayTriFinder(self._Delaunay,
                                            self._triangulation)
        if kind == 'linear':
            self._kind = kind
            self._Te_interpolator = LinearTriInterpolator(
                self._triangulation, self._Te, trifinder=self._trifinder)
        elif kind == 'cubic':
            self._kind = kind
            self._Te_interpolator = CubicTriInterpolator(
                self._triangulation, self._Te, trifinder=self._trifinder)
        else:
            raise ValueError('Wrong kind of interpolation: {0}. Available \
options are "linear" and "cubic".'.format(kind))
Ejemplo n.º 4
0
    def __draw_plot(self):
        freqCentre = self.spinCentre.GetValue()
        freqBw = self.spinBw.GetValue()
        freqMin = (freqCentre - freqBw) / 1000.
        freqMax = (freqCentre + freqBw) / 1000.

        coords = {}
        for timeStamp in self.spectrum:
            spectrum = self.spectrum[timeStamp]
            sweep = [
                yv for xv, yv in spectrum.items() if freqMin <= xv <= freqMax
            ]
            if len(sweep):
                peak = max(sweep)
                try:
                    location = self.location[timeStamp]
                except KeyError:
                    continue

                coord = tuple(location[0:2])
                if coord not in coords:
                    coords[coord] = peak
                else:
                    coords[coord] = (coords[coord] + peak) / 2

        x = []
        y = []
        z = []

        for coord, peak in coords.items():
            x.append(coord[1])
            y.append(coord[0])
            z.append(peak)

        self.extent = (min(x), max(x), min(y), max(y))
        self.xyz = (x, y, z)

        xi, yi = numpy.meshgrid(
            numpy.linspace(min(x), max(x), self.IMAGE_SIZE),
            numpy.linspace(min(y), max(y), self.IMAGE_SIZE))

        if self.plotMesh or self.plotCont:
            triangle = Triangulation(x, y)
            interp = CubicTriInterpolator(triangle, z, kind='geom')
            zi = interp(xi, yi)

            if self.plotMesh:
                self.plot = self.axes.pcolormesh(xi,
                                                 yi,
                                                 zi,
                                                 cmap=self.colourMap)
                self.plot.set_zorder(1)

            if self.plotCont:
                contours = self.axes.contour(xi,
                                             yi,
                                             zi,
                                             linewidths=0.5,
                                             colors='k')
                self.axes.clabel(contours,
                                 inline=1,
                                 fontsize='x-small',
                                 gid='clabel',
                                 zorder=3)

        if self.plotHeat:
            image = create_heatmap(x, y, self.IMAGE_SIZE, self.IMAGE_SIZE / 10,
                                   self.colourHeat)
            heatMap = self.axes.imshow(image,
                                       aspect='auto',
                                       extent=self.extent)
            heatMap.set_zorder(2)

        if self.plotPoint:
            self.axes.plot(x, y, 'wo')
            for posX, posY, posZ in zip(x, y, z):
                points = self.axes.annotate('{0:.2f}dB'.format(posZ),
                                            xy=(posX, posY),
                                            xytext=(-5, 5),
                                            ha='right',
                                            textcoords='offset points')
                points.set_zorder(3)

        if matplotlib.__version__ >= '1.3':
            effect = patheffects.withStroke(linewidth=2,
                                            foreground="w",
                                            alpha=0.75)
            for child in self.axes.get_children():
                child.set_path_effects([effect])

        if self.plotAxes:
            self.axes.set_axis_on()
        else:
            self.axes.set_axis_off()
        self.canvas.draw()
Ejemplo n.º 5
0
# Mask off unwanted triangles.
triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
                         y[triang.triangles].mean(axis=1))
                < min_radius)

#-----------------------------------------------------------------------------
# Refine data - interpolates the electrical potential V
#-----------------------------------------------------------------------------
refiner = UniformTriRefiner(triang)
tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3)

#-----------------------------------------------------------------------------
# Computes the electrical field (Ex, Ey) as gradient of electrical potential
#-----------------------------------------------------------------------------
tci = CubicTriInterpolator(triang, -V)
# Gradient requested here at the mesh nodes but could be anywhere else:
(Ex, Ey) = tci.gradient(triang.x, triang.y)
E_norm = np.sqrt(Ex**2 + Ey**2)

#-----------------------------------------------------------------------------
# Plot the triangulation, the potential iso-contours and the vector field
#-----------------------------------------------------------------------------
fig, ax = plt.subplots()
ax.set_aspect('equal')
# Enforce the margins, and enlarge them to give room for the vectors.
ax.use_sticky_edges = False
ax.margins(0.07)

ax.triplot(triang, color='0.8')
Ejemplo n.º 6
0
# Mask off unwanted triangles.
triang.set_mask(
    np.hypot(x[triang.triangles].mean(axis=1), y[triang.triangles].mean(
        axis=1)) < min_radius)

#-----------------------------------------------------------------------------
# Refine data - interpolates the electrical potential V
#-----------------------------------------------------------------------------
refiner = UniformTriRefiner(triang)
tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3)

#-----------------------------------------------------------------------------
# Computes the electrical field (Ex, Ey) as gradient of electrical potential
#-----------------------------------------------------------------------------
tci = CubicTriInterpolator(triang, -V)
# Gradient requested here at the mesh nodes but could be anywhere else:
(Ex, Ey) = tci.gradient(triang.x, triang.y)
E_norm = np.sqrt(Ex**2 + Ey**2)

#-----------------------------------------------------------------------------
# Plot the triangulation, the potential iso-contours and the vector field
#-----------------------------------------------------------------------------
fig, ax = plt.subplots()
ax.set_aspect('equal')
# Enforce the margins, and enlarge them to give room for the vectors.
ax.use_sticky_edges = False
ax.margins(0.07)

ax.triplot(triang, color='0.8')
Ejemplo n.º 7
0
def spatial_autocorr_fft(tri,
                         U,
                         V,
                         N_grid=512,
                         auto=False,
                         transform=False,
                         tree=None,
                         interp='Lanczos'):
    """
    Function to estimate autocorrelation from a single increment in cartesian
    coordinates(tau, eta)
    Input:
    -----
        tri      - Delaunay triangulation object of unstructured grid.
                   
        N_grid     - Squared, structured grid resolution to apply FFT.
        
        U, V     - Arrays with cartesian components of wind speed.
        
    Output:
    ------
        r_u,r_v  - 2D arrays with autocorrelation function rho(tau,eta) 
                   for U and V, respectively.               
    """
    if transform:
        U_mean = avetriangles(np.c_[tri.x, tri.y], U, tri)
        V_mean = avetriangles(np.c_[tri.x, tri.y], V, tri)
        # Wind direction
        gamma = np.arctan2(V_mean, U_mean)
        # Components in matrix of coefficients
        S11 = np.cos(gamma)
        S12 = np.sin(gamma)
        T = np.array([[S11, S12], [-S12, S11]])
        vel = np.array(np.c_[U, V]).T
        vel = np.dot(T, vel)
        X = np.array(np.c_[tri.x, tri.y]).T
        X = np.dot(T, X)
        U = vel[0, :]
        V = vel[1, :]
        tri = Triangulation(X[0, :], X[1, :])
        mask = TriAnalyzer(tri).get_flat_tri_mask(.05)
        tri = Triangulation(tri.x, tri.y, triangles=tri.triangles[~mask])
        U_mean = avetriangles(np.c_[tri.x, tri.y], U, tri)
        V_mean = avetriangles(np.c_[tri.x, tri.y], V, tri)
    else:
        # Demeaning
        U_mean = avetriangles(np.c_[tri.x, tri.y], U, tri)
        V_mean = avetriangles(np.c_[tri.x, tri.y], V, tri)

    grid = np.meshgrid(np.linspace(np.min(tri.x), np.max(tri.x), N_grid),
                       np.linspace(np.min(tri.y), np.max(tri.y), N_grid))

    U = U - U_mean
    V = V - V_mean

    # Interpolated values of wind field to a squared structured grid

    if interp == 'cubic':
        U_int = CubicTriInterpolator(tri, U)(grid[0].flatten(),
                                             grid[1].flatten()).data
        V_int = CubicTriInterpolator(tri, V)(grid[0].flatten(),
                                             grid[1].flatten()).data
        U_int = np.reshape(U_int, grid[0].shape)
        V_int = np.reshape(V_int, grid[0].shape)
    else:
        #        U_int= lanczos_int_sq(grid,tree,U)
        #        V_int= lanczos_int_sq(grid,tree,V)
        U_int = LinearTriInterpolator(tri, U)(grid[0].flatten(),
                                              grid[1].flatten()).data
        V_int = LinearTriInterpolator(tri, V)(grid[0].flatten(),
                                              grid[1].flatten()).data
        U_int = np.reshape(U_int, grid[0].shape)
        V_int = np.reshape(V_int, grid[0].shape)

    #zero padding
    U_int[np.isnan(U_int)] = 0.0
    V_int[np.isnan(V_int)] = 0.0
    fftU = np.fft.fft2(U_int)
    fftV = np.fft.fft2(V_int)
    if auto:

        # Autocorrelation
        r_u = np.real(np.fft.fftshift(np.fft.ifft2(np.absolute(fftU)**
                                                   2))) / len(U_int.flatten())
        r_v = np.real(np.fft.fftshift(np.fft.ifft2(np.absolute(fftV)**
                                                   2))) / len(U_int.flatten())
        r_uv = np.real(
            np.fft.fftshift(np.fft.ifft2(np.real(
                fftU * np.conj(fftV))))) / len(U_int.flatten())

    dx = np.max(np.diff(grid[0].flatten()))
    dy = np.max(np.diff(grid[1].flatten()))

    n = grid[0].shape[0]
    m = grid[1].shape[0]
    # Spectra
    fftU = np.fft.fftshift(fftU)
    fftV = np.fft.fftshift(fftV)
    fftUV = fftU * np.conj(fftV)
    Suu = 2 * (np.abs(fftU)**2) * (dx * dy) / (n * m)
    Svv = 2 * (np.abs(fftV)**2) * (dx * dy) / (n * m)
    Suv = 2 * np.real(fftUV) * (dx * dy) / (n * m)
    k1 = np.fft.fftshift((np.fft.fftfreq(n, d=dx)))
    k2 = np.fft.fftshift((np.fft.fftfreq(m, d=dy)))
    if auto:
        return (r_u, r_v, r_uv, Suu, Svv, Suv, k1, k2)
    else:
        return (Suu, Svv, Suv, k1, k2)
Ejemplo n.º 8
0
    for line in open('data.1'):
        row = line.strip().split(" ")
        x.append(float(row[0]))
        y.append(float(row[1]))
    for line in open('data.2'):
        row = line.strip().split(" ")
        v.append(float(row[0]))
    for line in open('data.3'):
        row = line.strip().split(" ")
        m.append([int(row[0]) - 1,
                  int(row[1]) - 1,
                  int(row[2]) - 1])

    triangles = Triangulation(x, y, m)

    tci = CubicTriInterpolator(triangles, -numpy.array(v))
    (u, v) = tci.gradient(triangles.x, triangles.y)
    v_norm = numpy.sqrt(u**2, v**2)

    fig, ax = plt.subplots()
    ax.set_aspect('equal')
    ax.use_sticky_edges = False
    ax.margins(0.07)
    ax.triplot(triangles, color='0.8', lw=0.5)

    #tcf = ax.tricontourf(triangles, -numpy.array(v));
    #fig.colorbar(tcf);

    ax.quiver(triangles.x, triangles.y, u / v_norm, v / v_norm, color='blue')
    plt.savefig('1.svg')