def use_matplot(): from matplotlib import use as mpl_use # Fix possible problems with Mac OS X venv backend if platform == "darwin": mpl_use("TkAgg") environ.update({"TK_SILENCE_DEPRECATION": "1"}) from matplotlib import pyplot as _plot global plot plot = _plot
def plot_train(history): from matplotlib import use as mpl_use mpl_use('Agg') import seaborn as sns import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111) for key, vals in history.history.items(): ax.plot(np.arange(len(vals)), vals, '-o', label=key) ax.legend() fig.savefig('deep_train.png', bbox_inches='tight', transparent=True) return 0
############################################################ # FlatCAM: 2D Post-processing for Manufacturing # # http://caram.cl/software/flatcam # # Author: Juan Pablo Caram (c) # # Date: 2/5/2014 # # MIT Licence # ############################################################ from PyQtX import QtGui, QtCore from PyQtX.QtWidgets import QWidget, QLineEdit, QCheckBox, QPlainTextEdit, QInputDialog, QPushButton, QScrollArea, QListView # Prevent conflict with Qt5 and above. from matplotlib import use as mpl_use mpl_use("Qt4Agg") from matplotlib.figure import Figure from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_agg import FigureCanvasAgg import FlatCAMApp import logging log = logging.getLogger('base') class CanvasCache(QtCore.QObject): """ Case story #1: 1) No objects in the project. 2) Object is created (new_object() emits object_created(obj)).
# -*- coding: utf-8 -*- import errno import os import pickle import re from matplotlib import use as mpl_use mpl_use("Agg") # noqa: E402 from matplotlib import pyplot as mpl_plt import pytest def mkdir_p(path): try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: # pragma: no cover raise def pytest_addoption(parser): parser.addoption( "--plots", nargs="?", default=False, const=True, help="Save plots (can optionally specify a directory for plots).",
#!/usr/bin/env python from matplotlib import use as mpl_use, ticker mpl_use('Agg') import pandas as pd import matplotlib.pyplot as plt from scipy.stats import poisson, chisquare, chi2_contingency import glob import os import seaborn as sns import numpy as np sns.set_style('white') padding = pd.DataFrame({'fragment_counts': range(5, 101), 'counts': [0] * 96}) def read_file(filename): samplename = os.path.basename(filename.split('.')[0]) df = pd.read_table(filename, sep=' ', names = ['fragment_counts','counts'])\ .append(padding) \ .groupby(['fragment_counts'])\ .max()\ .assign(samplename = samplename)\ .assign(normalized_count = lambda d: d['counts']/np.sum(d['counts']))\ .reset_index() return df def rename(x): return 'Simulation (reads)' if 'sim' in x else 'TGIRT-seq (UMI)'
#!/usr/bin/env python import sys import glob import os import pandas as pd import seaborn as sns from matplotlib import use as mpl_use mpl_use("agg") import matplotlib.pyplot as plt import numpy as np import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger("SARS-CoV2 coverage") plt.rc("axes", labelsize=15) plt.rc("xtick", labelsize=15) plt.rc("ytick", labelsize=15) def read_bed(bed): """ reading mosdepth output: {prefix}.per-base.bed.gz into pandas dataframe """ logger.info("Reading: %s" % bed) return (pd.read_csv( bed, names=["chrom", "start", "end", "read_coverage"], sep="\t").assign( samplename=os.path.basename(os.path.dirname(bed))).assign(
# -*- coding: utf-8 -*- """ Created on Wed Feb 24 13:13:10 2021 @author: Meghana """ from matplotlib import use as mpl_use mpl_use('Agg') # Issues warning on spyder - don't worry abt it from glob import glob from argparse import ArgumentParser as argparse_ArgumentParser import re import pandas as pd from matplotlib.pyplot import figure as plt_figure, savefig as plt_savefig, close as plt_close, plot as plt_plot, legend as plt_legend, xlabel as plt_xlabel, ylabel as plt_ylabel, title as plt_title parser = argparse_ArgumentParser("Input parameters") parser.add_argument("--direct", default="humap", help="Input parameters file name") parser.add_argument( "--main_folder", default="/results_73_neg_unif_10xisa_e0.01_T01.75_a0.005_qi_o", help="Input parameters file name") parser.add_argument("--out_file_suffix", default="", help="out files suffix") parser.add_argument("--parameter", default="overlap_threshold_qi", help="Input parameters file name") args = parser.parse_args() def get_metrics(lines):
#!/usr/bin/env python3 from matplotlib import use as mpl_use from sys import platform from os import environ # Fix possible problems with Mac OS X venv backend if platform == "darwin": mpl_use("TkAgg") environ.update({"TK_SILENCE_DEPRECATION": "1"}) from matplotlib import pyplot as plot from grinder.decorators import exception_handler from grinder.defaultvalues import DefaultPlotValues, DefaultValues from grinder.errors import ( GrinderPlotsAdjustAutopctError, GrinderPlotsCreatePieChartError, GrinderPlotsSavePieChartError, ) from grinder.filemanager import GrinderFileManager class GrinderPlots: """ Pie charts and plots creator """ def __init__(self): self.plot = None self.results_figure_id: int = 0
""" ROI plots in matplotlib """ import logging import os from matplotlib import use as mpl_use mpl_use('Qt4Agg') import matplotlib as mpl from matplotlib.backends.backend_qt4agg \ import FigureCanvasQTAgg as FigureCanvas import numpy as np from . import data logger = logging.getLogger('roitool') # Note: FigureCanvas is also a QWidget class ROIPlot(FigureCanvas): """ Plot widget """ def __init__(self): style = os.environ.get('ROITOOL_PLOT_STYLE', 'ggplot') if style: try: import matplotlib.style if style == 'xkcd': mpl.pyplot.xkcd() else: mpl.style.use(style)
from matplotlib import use as mpl_use mpl_use('agg') import random from collections import Counter, defaultdict from scipy.stats import ranksums from scipy.special import ndtr from peak_utils import * import RNA from multiprocessing import Pool def get_pvalues(args): i, row = args simulation = 10000 bases = list('ACTG') seq = row['seq'] sense = row['is_sense'] fold, energy = RNA.fold(seq) b_counts = Counter(seq.upper()) weights = [b_counts[n] for n in bases] random_energy = [] for i in range(simulation): random_seq = ''.join(random.choices(bases, k=len(seq), weights=weights)) s, e = RNA.fold(random_seq) random_energy.append(e) p_val = sum(1 for e in random_energy if e <= energy) return p_val / float(simulation) def main():
import random from matplotlib import style from matplotlib import pyplot as plt from kivy.app import App from matplotlib import use as mpl_use from kivy.lang import Builder from kivy.uix.boxlayout import BoxLayout form kivy.clock import Clock import kivy.properties as kp mpl_use('model://kivy.garden.matplotlib.backend_kivyagg') style.use("dark_background") class TestApp(App): def build(self): return Builder.load_string("Chart:") class Chart(BoxLayout): data= kp.ListProperty([]) def __init__(self,**kwargs): super().__init__(**kwargs) self.fig, self.ax1 = plt.subplots() self.ax1.plot([],[],'bo') self.mpl_canvas = self.fig.canvas self.add_widget(self.mpl_canvas) Clock.schedule_interval(self.update,1) def on_data(self,*args): self.ax1.clear() y = [i**2 for i in self.data] self.ax1.plot(self.data,y,'bo-',linewidth=5.0)
############################################################ # FlatCAM: 2D Post-processing for Manufacturing # # http://caram.cl/software/flatcam # # Author: Juan Pablo Caram (c) # # Date: 2/5/2014 # # MIT Licence # ############################################################ from PyQt4 import QtGui, QtCore # Prevent conflict with Qt5 and above. from matplotlib import use as mpl_use mpl_use("Qt4Agg") from matplotlib.figure import Figure from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas import FlatCAMApp class PlotCanvas: """ Class handling the plotting area in the application. """ def __init__(self, container): """ The constructor configures the Matplotlib figure that will contain all plots, creates the base axes and connects events to the plotting area. :param container: The parent container in which to draw plots.
# -*- coding: utf-8 -*- __version__ = 0.6 from matplotlib import use as mpl_use mpl_use('WXAgg') import sys import wx import lib import numpy as np from lib.gui__MAIN import Frame_MAIN from matplotlib import rcParams rcParams['mathtext.default'] = 'sf' def main(): import os path = os.path.dirname(os.path.realpath(__file__)) os.chdir(path) app = wx.App(0) frame = WavGliDaPro(None) frame.init() frame.Show() app.MainLoop() class WavGliDaPro(Frame_MAIN): from lib.gui_0_help import func_update_help
from matplotlib.path import Path from matplotlib.patches import Polygon as pol from kivy.uix.recycleview import RecycleView from kivy.uix.scrollview import ScrollView from sklearn.preprocessing import normalize from kivy.uix.label import Label from kivy.uix.popup import Popup from kivy.garden.matplotlib.backend_kivyagg import FigureCanvasKivyAgg, NavigationToolbar2Kivy import matplotlib.pyplot as plt from matplotlib.figure import Figure from kivy.uix.boxlayout import BoxLayout from kivy.uix.gridlayout import GridLayout from kivy.uix.scatterlayout import ScatterLayout from matplotlib import use as mpl_use mpl_use('module://kivy.garden.matplotlib.backend_kivy') class Node: def __init__(self, name): self.parent = name self.children = [] def add_child(self, obj): self.children.append(obj) def Combination(a, combi, n, r, depth, index, val): global new, files if index == r: x = []
if "n_embd" in args: print("n_embd: ", args.n_embd) else: print("n_embd: ", model.n_embd) print() # ------------------------------------------------------------------ # Fit trainer.fit(model, datamodule=dm) if __name__ == "__main__": from matplotlib import use as mpl_use mpl_use("Agg") pl.seed_everything(1234) parser = ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = TurnGPTDM.add_data_specific_args(parser) parser.add_argument("--early_stopping", default=False, type=bool) parser.add_argument("--patience", default=10, type=int) parser.add_argument( "--model", type=str, default="mini", # sparse, hugging ) parser.add_argument( "--datasets",
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright © 2019 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source # & Institut Laue - Langevin # SPDX - License - Identifier: GPL - 3.0 + # This file is part of the mantid workbench. from __future__ import (absolute_import, unicode_literals) import unittest from matplotlib import use as mpl_use mpl_use('Agg') # noqa from matplotlib.pyplot import figure from mantid.simpleapi import CreateWorkspace from mantid.plots import MantidAxes # register MantidAxes projection # noqa from mantid.py3compat.mock import Mock, patch from mantidqt.widgets.plotconfigdialog.curvestabwidget import CurveProperties from mantidqt.widgets.plotconfigdialog.curvestabwidget.presenter import ( CurvesTabWidgetPresenter, remove_curve_from_ax, curve_has_errors) class CurvesTabWidgetPresenterTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.fig = figure() cls.ws = CreateWorkspace(DataX=[0, 1], DataY=[3, 4], DataE=[0.1, 0.1],
#!/Library/Frameworks/Python.framework/Versions/Current/bin/python #Relies on wx, matplotlib, scipy, numpy import wx import os, glob, sys, imp try: from wx.lib.pubsub import pub except: from wx.lib.pubsub import pub import numpy as np from matplotlib import use as mpl_use mpl_use('WXAgg') from matplotlib.patches import Circle from matplotlib.figure import Figure import matplotlib.font_manager as fm from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigCanvas, NavigationToolbar2WxAgg as NavigationToolbar from matplotlib.ticker import MaxNLocator from threading import Thread import NanoPeakCell_dev as Hit import wx.lib.buttons as buttons import fabio, pyFAI, pyFAI.distortion, pyFAI.detectors import peakfind as pf import mynormalize import matplotlib.pyplot as plt import matplotlib # These imports will make sure the user will only be able to select outputs its system can save # TODO: Warning: Please install or source blabla to be able to export images in X format try : imp.find_module('h5py') H5=True