Ejemplo n.º 1
0
 def importance_factor(self, bigQ, blob, pseudoblob):
     '''
     Calculate the relative importance of this measurement (weight) to be
     used as part of resampling
     Input:
         np.ndarray bigQ (measurement covariance)
         Blob blob (recieved measurement)
         Blob pseudoblob (estimated measurement)
     '''
     v1 = 2.0*math.pi *magnitude(bigQ)
     v1 = pow(v1, -0.5)
     delz = blob_to_matrix(blob) - blob_to_matrix(pseudoblob)
     delzt = delz.T
     v2 = math.exp(-0.5 * mm(mm(delzt, inverse(bigQ)), delz))
     return v1 * v2
Ejemplo n.º 2
0
 def importance_factor(self, bigQ, blob, pseudoblob):
     '''
     Calculate the relative importance of this measurement (weight) to be
     used as part of resampling
     Input:
         np.ndarray bigQ (measurement covariance)
         Blob blob (recieved measurement)
         Blob pseudoblob (estimated measurement)
     '''
     v1 = 2.0 * math.pi * magnitude(bigQ)
     v1 = pow(v1, -0.5)
     delz = blob_to_matrix(blob) - blob_to_matrix(pseudoblob)
     delzt = delz.T
     v2 = math.exp(-0.5 * mm(mm(delzt, inverse(bigQ)), delz))
     return v1 * v2
Ejemplo n.º 3
0
 def update_mean(self, kalman_gain, measure, expected_measure):
     '''
     Update the mean of a known feature based on the calculated Kalman gain
     and the different between the given measurement and the expected
     measurement
     Input:
         np.ndarray kalman_gain
         np.ndarray measure(ment)
         np.ndarray expected_measure(ment)
     Output:
         None
     '''
     if self.__immutable__:
         return None
     delz = blob_to_matrix(measure) - blob_to_matrix(expected_measure)
     adjust = mm(kalman_gain, delz)
     self.mean = self.mean + adjust
     self.update_count += 1
Ejemplo n.º 4
0
 def update_mean(self, kalman_gain, measure, expected_measure):
     '''
     Update the mean of a known feature based on the calculated Kalman gain
     and the different between the given measurement and the expected
     measurement
     Input:
         np.ndarray kalman_gain
         np.ndarray measure(ment)
         np.ndarray expected_measure(ment)
     Output:
         None
     '''
     if self.__immutable__:
         return None
     delz = blob_to_matrix(measure) - blob_to_matrix(expected_measure)
     adjust = mm(kalman_gain, delz)
     self.mean = self.mean + adjust
     self.update_count += 1