Ejemplo n.º 1
0
def mp_top_k_motifs(profile,
                    exclusion_zone=None,
                    k=3,
                    max_neighbors=10,
                    radius=3):
    """
    Find the top K number of motifs (patterns) given a matrix profile. By
    default the algorithm will find up to 3 motifs (k) and up to 10 of their
    neighbors with a radius of 3 * min_dist.

    Parameters
    ----------
    profile : dict
        The output from one of the matrix profile algorithms.
    exclusion_zone : int, Default to algorithm ez
        Desired number of values to exclude on both sides of the motif. This
        avoids trivial matches. It defaults to half of the computed window
        size. Setting the exclusion zone to 0 makes it not apply.
    k : int, Default = 3
        Desired number of motifs to find.
    neighbor_count : int, Default = 10
        The maximum number of neighbors to include for a given motif.
    radius : int, Default = 3
        The radius is used to associate a neighbor by checking if the
        neighbor's distance is less than or equal to dist * radius

    Returns
    -------
    The original input obj with the addition of the "motifs" key. The motifs
    key consists of the following structure.

    A list of dicts containing motif indices and their corresponding neighbor
    indices.

    [
        {
            'motifs': [first_index, second_index],
            'neighbors': [index, index, index ...max_neighbors]
        }
    ]
    """
    if not core.is_mp_obj(profile):
        raise ValueError('Expecting MP data structure!')

    window_size = profile['w']
    data = profile.get('data', None)
    if data:
        ts = data.get('ts', None)

    data_len = len(ts)
    motifs = []
    mp = np.copy(profile['mp'])
    mpi = profile['pi']

    # TODO: this is based on STOMP standards when this motif finding algorithm
    # originally came out. Should we default this to 4.0 instead? That seems
    # to be the common value now per new research.
    if exclusion_zone is None:
        exclusion_zone = profile.get('ez', None)

    for i in range(k):
        min_idx = np.argmin(mp)
        min_dist = mp[min_idx]

        # we no longer have any motifs to find as all values are nan/inf
        if core.is_nan_inf(min_dist):
            break

        # create a motif pair corresponding to the first appearance and
        # second appearance
        first_idx = np.min([min_idx, mpi[min_idx]])
        second_idx = np.max([min_idx, mpi[min_idx]])

        # compute distance profile using mass2 for first appearance
        query = ts[first_idx:first_idx + window_size]
        distance_profile = mass2(ts, query)

        # exclude already picked motifs and neighbors
        mask = core.nan_inf_indices(mp)
        distance_profile[mask] = np.inf

        # apply exclusion zone for motif pair
        for j in (first_idx, second_idx):
            distance_profile = core.apply_exclusion_zone(
                exclusion_zone, False, window_size, data_len, j,
                distance_profile)
            mp = core.apply_exclusion_zone(exclusion_zone, False, window_size,
                                           data_len, j, mp)

        # find up to max_neighbors
        neighbors = []
        for j in range(max_neighbors):
            neighbor_idx = np.argmin(distance_profile)
            neighbor_dist = distance_profile[neighbor_idx]
            not_in_radius = not ((radius * min_dist) >= neighbor_dist)

            # no more neighbors exist based on radius
            if core.is_nan_inf(neighbor_dist) or not_in_radius:
                break

            # add neighbor and apply exclusion zone
            neighbors.append(neighbor_idx)
            distance_profile = core.apply_exclusion_zone(
                exclusion_zone, False, window_size, data_len, neighbor_idx,
                distance_profile)
            mp = core.apply_exclusion_zone(exclusion_zone, False, window_size,
                                           data_len, neighbor_idx, mp)

        # add motifs and neighbors to results
        motifs.append({
            'motifs': [first_idx, second_idx],
            'neighbors': neighbors
        })

    profile['motifs'] = motifs

    return profile
Ejemplo n.º 2
0
def pmp_top_k_motifs(profile,
                     exclusion_zone=None,
                     k=3,
                     max_neighbors=10,
                     radius=3):
    """
    Find the top K number of motifs (patterns) given a pan matrix profile. By
    default the algorithm will find up to 3 motifs (k) and up to 10 of their
    neighbors with a radius of 3 * min_dist.

    Parameters
    ----------
    profile : dict
        The output from one of the pan matrix profile algorithms.
    exclusion_zone : int, Default to algorithm ez
        Desired number of values to exclude on both sides of the motif. This
        avoids trivial matches. It defaults to half of the computed window
        size. Setting the exclusion zone to 0 makes it not apply.
    k : int, Default = 3
        Desired number of motifs to find.
    neighbor_count : int, Default = 10
        The maximum number of neighbors to include for a given motif.
    radius : int, Default = 3
        The radius is used to associate a neighbor by checking if the
        neighbor's distance is less than or equal to dist * radius

    Returns
    -------
    The original input obj with the addition of the "motifs" key. The motifs
    key consists of the following structure.

    A list of dicts containing motif indices and their corresponding neighbor
    indices. Note that each index is a (row, col) index corresponding to the
    pan matrix profile.

    [
        {
            'motifs': [first_index, second_index],
            'neighbors': [index, index, index ...max_neighbors]
        }
    ]
    """
    if not core.is_pmp_obj(profile):
        raise ValueError('Expecting PMP data structure!')

    data = profile.get('data', None)
    ts = data.get('ts', None)
    data_len = len(ts)

    pmp = profile.get('pmp', None)
    profile_len = pmp.shape[1]
    pmpi = profile.get('pmpi', None)
    windows = profile.get('windows', None)

    # make sure we are working with Euclidean distances
    tmp = None
    if core.is_pearson_array(pmp):
        tmp = core.pearson_to_euclidean(pmp, windows)
    else:
        tmp = np.copy(pmp).astype('d')

    # replace nan and infs with infinity
    tmp[core.nan_inf_indices(tmp)] = np.inf

    motifs = []
    for _ in range(k):
        min_idx = np.unravel_index(np.argmin(tmp), tmp.shape)
        min_dist = tmp[min_idx]

        # nothing else to find...
        if core.is_nan_inf(min_dist):
            break

        # create the motif pair
        min_row_idx = min_idx[0]
        min_col_idx = min_idx[1]

        # motif pairs are respective to the column of the matching row
        first_idx = np.min([min_col_idx, pmpi[min_row_idx][min_col_idx]])
        second_idx = np.max([min_col_idx, pmpi[min_row_idx][min_col_idx]])

        # compute distance profile for first appearance
        window_size = windows[min_row_idx]
        query = ts[first_idx:first_idx + window_size]
        distance_profile = mass2(ts, query)

        # extend the distance profile to be as long as the original
        infs = np.full(profile_len - len(distance_profile), np.inf)
        distance_profile = np.append(distance_profile, infs)

        # exclude already picked motifs and neighbors
        mask = core.nan_inf_indices(pmp[min_row_idx])
        distance_profile[mask] = np.inf

        # determine the exclusion zone if not set
        if not exclusion_zone:
            exclusion_zone = int(np.floor(window_size / 2))

        # apply exclusion zone for motif pair
        for j in (first_idx, second_idx):
            distance_profile = core.apply_exclusion_zone(
                exclusion_zone, False, window_size, data_len, j,
                distance_profile)
            tmp2 = core.apply_exclusion_zone(exclusion_zone, False,
                                             window_size, data_len, j,
                                             tmp[min_row_idx])
            tmp[min_row_idx] = tmp2

        # find up to max_neighbors
        neighbors = []
        for j in range(max_neighbors):
            neighbor_idx = np.argmin(distance_profile)
            neighbor_dist = np.real(distance_profile[neighbor_idx])
            not_in_radius = not ((radius * min_dist) >= neighbor_dist)

            # no more neighbors exist based on radius
            if core.is_nan_inf(neighbor_dist) or not_in_radius:
                break

            # add neighbor and apply exclusion zone
            neighbors.append((min_row_idx, neighbor_idx))
            distance_profile = core.apply_exclusion_zone(
                exclusion_zone, False, window_size, data_len, neighbor_idx,
                distance_profile)
            tmp2 = core.apply_exclusion_zone(exclusion_zone, False,
                                             window_size, data_len,
                                             neighbor_idx, tmp[min_row_idx])
            tmp[min_row_idx] = tmp2

        # add the motifs and neighbors
        # note that they are (row, col) indices
        motifs.append({
            'motifs': [(min_row_idx, first_idx), (min_row_idx, second_idx)],
            'neighbors':
            neighbors
        })

    profile['motifs'] = motifs

    return profile
Ejemplo n.º 3
0
def _batch_compute(args):
    """
    Internal function to compute a batch of the time series in parallel.

    Parameters
    ----------
    args : tuple
        Various attributes used for computing the batch.
        (
            batch_start : int
                The starting index for this batch.
            batch_end : int
                The ending index for this batch.
            ts : array_like
                The time series to compute the matrix profile for.
            query : array_like
                The query.
            window_size : int
                The size of the window to compute the profile over.
            data_length : int
                The number of elements in the time series.
            profile_length : int
                The number of elements that will be in the final matrix
                profile.
            exclusion_zone : int
                Used to exclude trivial matches.
            data_mu : array_like
                The moving average over the time series for the given window
                size.
            data_sig : array_like
                The moving standard deviation over the time series for the
                given window size.
            first_product : array_like
                The first sliding dot product for the time series over index
                0 to window_size.
            skip_locs : array_like
                Indices that should be skipped for distance profile calculation
                due to a nan or inf.
        )

    Returns
    -------
    dict : profile
        The matrix profile, left and right matrix profiles and their respective
        profile indices.

        >>> {
        >>>     'mp': The matrix profile,
        >>>     'pi': The matrix profile 1NN indices,
        >>>     'rmp': The right matrix profile,
        >>>     'rpi': The right matrix profile 1NN indices,
        >>>     'lmp': The left matrix profile,
        >>>     'lpi': The left matrix profile 1NN indices,
        >>> }

    """
    num_dim, batch_start, batch_end, ts, query, window_size, data_length, \
    profile_length, exclusion_zone, data_mu, data_sig, \
    first_product, skip_locs, profile_dimension, return_dimension = args

    # initialize matrices
    matrix_profile = np.full((num_dim, profile_length), np.inf)
    profile_index = np.full((num_dim, profile_length), 0)

    left_matrix_profile = None
    right_matrix_profile = None
    left_profile_index = None
    right_profile_index = None

    left_matrix_profile = np.copy(matrix_profile)
    right_matrix_profile = np.copy(matrix_profile)
    left_profile_index = np.copy(profile_index)
    right_profile_index = np.copy(profile_index)

    # with batch 0 we do not need to recompute the dot product
    # however with other batch windows, we need the previous iterations sliding
    # dot product
    last_product = np.copy(first_product)
    if batch_start is 0:
        first_window = query[:, batch_start:batch_start + window_size]
    else:
        first_window = query[:, batch_start - 1:batch_start + window_size - 1]
        for i in range(num_dim):
            last_product[i, :] = core.fft_convolve(ts[i, :], first_window[i, :])

    query_sum = np.sum(first_window, axis=1)
    query_2sum = np.sum(first_window**2, axis=1)
    query_mu, query_sig = np.empty(num_dim), np.empty(num_dim)
    for i in range(num_dim):
        query_mu[i], query_sig[i] = core.moving_avg_std(first_window[i, :], window_size)

    drop_value = np.empty(num_dim)
    for i in range(num_dim):
        drop_value[i] = first_window[i, 0]
    distance_profile = np.empty((num_dim, profile_length))

    # make sure to compute inclusively from batch start to batch end
    # otherwise there are gaps in the profile
    if batch_end < profile_length:
        batch_end += 1

    # iteratively compute distance profile and update with element-wise mins
    for i in range(batch_start, batch_end):
        # check for nan or inf and skip
        if skip_locs[i]:
            continue
        for j in range(num_dim):
            if i == 0:
                query_window = query[j, i:i + window_size]
                distance_profile[j, :] = core.distance_profile(last_product[j, :], window_size, data_mu[j, :],
                                                               data_sig[j, :], query_mu[j], query_sig[j])

                # apply exclusion zone
                distance_profile[j, :] = core.apply_exclusion_zone(exclusion_zone, 0, window_size, data_length, 0,
                                                                   distance_profile[j, :])
            else:
                query_window = query[j, i:i + window_size]
                query_sum[j] = query_sum[j] - drop_value[j] + query_window[-1]
                query_2sum[j] = query_2sum[j] - drop_value[j]**2 + query_window[-1]**2
                query_mu[j] = query_sum[j] / window_size
                query_sig2 = query_2sum[j] / window_size - query_mu[j]**2
                if query_sig2 < _EPS:
                    query_sig2 = _EPS
                query_sig[j] = np.sqrt(query_sig2)
                last_product[j, 1:] = last_product[j, 0:data_length - window_size] \
                - ts[j, 0:data_length - window_size] * drop_value[j] \
                + ts[j, window_size:] * query_window[-1]
                last_product[j, 0] = first_product[j, i]

                distance_profile[j, :] = core.distance_profile(last_product[j, :], window_size, data_mu[j, :],
                                                               data_sig[j, :], query_mu[j], query_sig[j])

                # apply the exclusion zone
                distance_profile[j, :] = core.apply_exclusion_zone(exclusion_zone, 0, window_size, data_length, i,
                                                                   distance_profile[j, :])
            distance_profile[j, distance_profile[j, :] < _EPS] = 0
            drop_value[j] = query_window[0]
        if np.any(query_sig < _EPS):
            continue
        distance_profile[:, skip_locs] = np.inf
        distance_profile[data_sig < np.sqrt(_EPS)] = np.inf

        distance_profile_dim = np.argsort(distance_profile, axis=0)
        distance_profile_sort = np.sort(distance_profile, axis=0)
        distance_profile_cumsum = np.zeros(profile_length)
        for j in range(num_dim):
            distance_profile_cumsum += distance_profile_sort[j, :]
            distance_profile_mean = distance_profile_cumsum / (j + 1)

            # update the matrix profile
            indices = (distance_profile_mean < matrix_profile[j, :])
            matrix_profile[j, indices] = distance_profile_mean[indices]
            profile_index[j, indices] = i
            if return_dimension:
                profile_dimension[j][:, indices] = distance_profile_dim[:j + 1, indices]

            # update the left and right matrix profiles
            # find differences, shift left and update
            indices = distance_profile_mean[i:] < left_matrix_profile[j, i:]
            falses = np.zeros(i).astype('bool')
            indices = np.append(falses, indices)
            left_matrix_profile[j, indices] = distance_profile_mean[indices]
            left_profile_index[j, np.argwhere(indices)] = i

            # find differences, shift right and update
            indices = distance_profile_mean[0:i] < right_matrix_profile[j, 0:i]
            falses = np.zeros(profile_length - i).astype('bool')
            indices = np.append(indices, falses)
            right_matrix_profile[j, indices] = distance_profile_mean[indices]
            right_profile_index[j, np.argwhere(indices)] = i
    return {
        'mp': matrix_profile,
        'pi': profile_index,
        'pd': profile_dimension,
        'rmp': right_matrix_profile,
        'rpi': right_profile_index,
        'lmp': left_matrix_profile,
        'lpi': left_profile_index,
    }
Ejemplo n.º 4
0
def _batch_compute(args):
    """
    Internal function to compute a batch of the time series in parallel.

    Parameters
    ----------
    args : tuple
        Various attributes used for computing the batch.
        (
            batch_start : int
                The starting index for this batch.
            batch_end : int
                The ending index for this batch.
            ts : array_like
                The time series to compute the matrix profile for.
            query : array_like
                The query.
            window_size : int
                The size of the window to compute the profile over.
            data_length : int
                The number of elements in the time series.
            profile_length : int
                The number of elements that will be in the final matrix
                profile.
            exclusion_zone : int
                Used to exclude trivial matches.
            is_join : bool
                Flag to indicate if an AB join or self join is occuring.
            data_mu : array_like
                The moving average over the time series for the given window
                size.
            data_sig : array_like
                The moving standard deviation over the time series for the
                given window size.
            first_product : array_like
                The first sliding dot product for the time series over index
                0 to window_size.
            skip_locs : array_like
                Indices that should be skipped for distance profile calculation
                due to a nan or inf.
        )

    Returns
    -------
    dict : profile
        The matrix profile, left and right matrix profiles and their respective
        profile indices.

        >>> {
        >>>     'mp': The matrix profile,
        >>>     'pi': The matrix profile 1NN indices,
        >>>     'rmp': The right matrix profile,
        >>>     'rpi': The right matrix profile 1NN indices,
        >>>     'lmp': The left matrix profile,
        >>>     'lpi': The left matrix profile 1NN indices,
        >>> }

    """
    batch_start, batch_end, ts, query, window_size, data_length, \
    profile_length, exclusion_zone, is_join, data_mu, data_sig, \
    first_product, skip_locs = args

    # initialize matrices
    matrix_profile = np.full(profile_length, np.inf)
    profile_index = np.full(profile_length, 0)

    left_matrix_profile = None
    right_matrix_profile = None
    left_profile_index = None
    right_profile_index = None

    if not is_join:
        left_matrix_profile = np.copy(matrix_profile)
        right_matrix_profile = np.copy(matrix_profile)
        left_profile_index = np.copy(profile_index)
        right_profile_index = np.copy(profile_index)

    # with batch 0 we do not need to recompute the dot product
    # however with other batch windows, we need the previous iterations sliding
    # dot product
    last_product = None
    if batch_start is 0:
        first_window = query[batch_start:batch_start + window_size]
        last_product = np.copy(first_product)
    else:
        first_window = query[batch_start - 1:batch_start + window_size - 1]
        last_product = core.fft_convolve(ts, first_window)

    query_sum = np.sum(first_window)
    query_2sum = np.sum(first_window**2)
    query_mu, query_sig = core.moving_avg_std(first_window, window_size)

    drop_value = first_window[0]

    # only compute the distance profile for index 0 and update
    if batch_start is 0:
        distance_profile = core.distance_profile(last_product, window_size,
                                                 data_mu, data_sig, query_mu,
                                                 query_sig)

        # apply exclusion zone
        distance_profile = core.apply_exclusion_zone(exclusion_zone, is_join,
                                                     window_size, data_length,
                                                     0, distance_profile)

        # update the matrix profile
        indices = (distance_profile < matrix_profile)
        matrix_profile[indices] = distance_profile[indices]
        profile_index[indices] = 0

        batch_start += 1

    # make sure to compute inclusively from batch start to batch end
    # otherwise there are gaps in the profile
    if batch_end < profile_length:
        batch_end += 1

    # iteratively compute distance profile and update with element-wise mins
    for i in range(batch_start, batch_end):

        # check for nan or inf and skip
        if skip_locs[i]:
            continue

        query_window = query[i:i + window_size]
        query_sum = query_sum - drop_value + query_window[-1]
        query_2sum = query_2sum - drop_value**2 + query_window[-1]**2
        query_mu = query_sum / window_size
        query_sig2 = query_2sum / window_size - query_mu**2
        query_sig = np.sqrt(query_sig2)
        last_product[1:] = last_product[0:data_length - window_size] \
            - ts[0:data_length - window_size] * drop_value \
            + ts[window_size:] * query_window[-1]
        last_product[0] = first_product[i]
        drop_value = query_window[0]

        distance_profile = core.distance_profile(last_product, window_size,
                                                 data_mu, data_sig, query_mu,
                                                 query_sig)

        # apply the exclusion zone
        distance_profile = core.apply_exclusion_zone(exclusion_zone, is_join,
                                                     window_size, data_length,
                                                     i, distance_profile)

        # update the matrix profile
        indices = (distance_profile < matrix_profile)
        matrix_profile[indices] = distance_profile[indices]
        profile_index[indices] = i

        # update the left and right matrix profiles
        if not is_join:
            # find differences, shift left and update
            indices = distance_profile[i:] < left_matrix_profile[i:]
            falses = np.zeros(i).astype('bool')
            indices = np.append(falses, indices)
            left_matrix_profile[indices] = distance_profile[indices]
            left_profile_index[np.argwhere(indices)] = i

            # find differences, shift right and update
            indices = distance_profile[0:i] < right_matrix_profile[0:i]
            falses = np.zeros(profile_length - i).astype('bool')
            indices = np.append(indices, falses)
            right_matrix_profile[indices] = distance_profile[indices]
            right_profile_index[np.argwhere(indices)] = i

    return {
        'mp': matrix_profile,
        'pi': profile_index,
        'rmp': right_matrix_profile,
        'rpi': right_profile_index,
        'lmp': left_matrix_profile,
        'lpi': left_profile_index,
    }
Ejemplo n.º 5
0
def prescrimp(ts, window_size, query=None, step_size=0.25, sample_pct=0.1,
                     random_state=None, n_jobs=1):
    """
    This is the PreScrimp algorithm from the SCRIMP++ paper. It is primarly
    used to compute the approximate matrix profile. In this case we use
    a sample percentage to mock "the anytime/approximate nature".

    Parameters
    ----------
    ts : np.ndarray
        The time series to compute the matrix profile for.
    window_size : int
        The window size.
    query : array_like
        Optionally, a query can be provided to perform a similarity join.
    step_size : float, default 0.25
        The sampling interval for the window. The paper suggest 0.25 is the
        most practical. It should be a float value between 0 and 1.
    sample_pct : float, default = 0.1 (10%)
        Number of samples to compute distances for in the MP.
    random_state : int, default None
        Set the random seed generator for reproducible results.
    n_jobs : int, Default = 1
        Number of cpu cores to use.

    Note
    ----
    The matrix profiles computed from prescrimp will always be the approximate
    solution.

    Returns
    -------
    dict : profile
        A MatrixProfile data structure.
        
        >>> {
        >>>    'mp': The matrix profile,
        >>>    'pi': The matrix profile 1NN indices,
        >>>    'rmp': The right matrix profile,
        >>>    'rpi': The right matrix profile 1NN indices,
        >>>    'lmp': The left matrix profile,
        >>>    'lpi': The left matrix profile 1NN indices,
        >>>    'metric': The distance metric computed for the mp,
        >>>    'w': The window size used to compute the matrix profile,
        >>>    'ez': The exclusion zone used,
        >>>    'join': Flag indicating if a similarity join was computed,
        >>>    'sample_pct': Percentage of samples used in computing the MP,
        >>>    'data': {
        >>>        'ts': Time series data,
        >>>        'query': Query data if supplied
        >>>    }
        >>>    'class': "MatrixProfile"
        >>>    'algorithm': "prescrimp"
        >>>}

    Raises
    ------
    ValueError
        If window_size < 4.
        If window_size > query length / 2.
        If ts is not a list or np.array.
        If query is not a list or np.array.
        If ts or query is not one dimensional.
        If sample_pct is not between 0 and 1.

    """
    is_join = core.is_similarity_join(ts, query)
    if not is_join:
        query = ts

    # data conversion to np.array
    ts = core.to_np_array(ts)
    query = core.to_np_array(query)

    # validate step_size
    if not isinstance(step_size, float) or step_size > 1 or step_size < 0:
        raise ValueError('step_size should be a float between 0 and 1.')

    # validate sample_pct
    if not isinstance(sample_pct, float) or sample_pct > 1 or sample_pct < 0:
        raise ValueError('sample_pct should be a float between 0 and 1.')

    # validate random_state
    if random_state is not None:
        try:
            np.random.seed(random_state)
        except:
            raise ValueError('Invalid random_state value given.')

    if window_size < 4:
        error = "window size must be at least 4."
        raise ValueError(error)

    if window_size > len(query) / 2:
        error = "Time series is too short relative to desired window size"
        raise ValueError(error)

    # precompute some common values - profile length, query length etc.
    step_size = int(math.floor(window_size * step_size))
    profile_length = core.get_profile_length(ts, query, window_size)
    data_length = len(ts)
    exclusion_zone = int(np.ceil(window_size / 4.0))

    matrix_profile = np.zeros(profile_length)
    mp_index = np.zeros(profile_length, dtype='int')

    X = np.fft.fft(ts)
    mux, sigx = core.moving_avg_std(ts, window_size)

    dotproduct = np.zeros(profile_length)
    refine_distance = np.full(profile_length, np.inf)
    orig_index = np.arange(profile_length)

    # iterate over sampled indices and update the matrix profile
    # compute_order = compute_indices(profile_length, step_size, sample_pct)
    compute_order = np.arange(0, profile_length, step=step_size)

    for iteration, idx in enumerate(compute_order):
        subsequence = ts[idx:idx + window_size]

        # compute distance profile
        distance_profile = calc_distance_profile(X, subsequence, data_length,
            window_size, mux, sigx)
        
        # apply exclusion zone
        distance_profile = core.apply_exclusion_zone(exclusion_zone, is_join,
            window_size, data_length, idx, distance_profile)

        # find and store nearest neighbor
        if iteration == 0:
            matrix_profile = distance_profile
            mp_index[:] = idx
        else:
            update_pos = distance_profile < matrix_profile
            mp_index[update_pos] = idx
            matrix_profile[update_pos] = distance_profile[update_pos]

        idx_min = np.argmin(distance_profile)
        matrix_profile[idx] = distance_profile[idx_min]
        mp_index[idx] = idx_min
        idx_nn = mp_index[idx]

        # compute the target indices
        idx_diff = idx_nn - idx
        endidx = np.min([
            profile_length - 1,
            idx + step_size - 1,
            profile_length - idx_diff - 1
        ])
        beginidx = np.max([0, idx - step_size + 1, 2 - idx_diff])

        # compute dot product and refine distance for the idx, begin idx 
        # and end idx
        dotproduct = calc_dotproduct_idx(dotproduct, window_size, 
            matrix_profile, idx, sigx, idx_nn, mux)

        dotproduct = calc_dotproduct_end_idx(ts, dotproduct, idx, window_size,
                                             endidx, idx_nn, idx_diff)

        refine_distance = calc_refine_distance_end_idx(
            refine_distance, dotproduct, idx, endidx, mux, sigx, idx_nn,
            idx_diff, window_size)
        
        dotproduct = calc_dotproduct_begin_idx(
            ts, dotproduct, beginidx, idx, idx_diff, window_size, idx_nn)

        refine_distance = calc_refine_distance_begin_idx(
            refine_distance, dotproduct, beginidx, idx, idx_diff, idx_nn, 
            sigx, mux, window_size)

        matrix_profile, mp_index = apply_update_positions(matrix_profile, 
                                                          mp_index, 
                                                          refine_distance, 
                                                          beginidx, 
                                                          endidx, 
                                                          orig_index, idx_diff)

    return {
        'mp': matrix_profile,
        'pi': mp_index,
        'rmp': None,
        'rpi': None,
        'lmp': None,
        'lpi': None,
        'w': window_size,
        'ez': exclusion_zone,
        'join': is_join,
        'sample_pct': sample_pct,
        'metric': 'euclidean',
        'data': {
            'ts': ts,
            'query': query if is_join else None
        },
        'class': 'MatrixProfile',
        'algorithm': 'prescrimp',
    }