Ejemplo n.º 1
0
def _get_model(path):
    with open(path, "rb") as fp:
        contents = pickle.load(fp)

    Js, Ks, gJs, gKs, converged, meta = contents

    # Get best model.
    J_best_mml, K_best_mml = grid_search.best(Js, Ks, meta["message_length"])
    model = meta["best_models"]["mml"]

    return model
Ejemplo n.º 2
0
def _get_model(path):
    with open(path, "rb") as fp:
        contents = pickle.load(fp)

    Js, Ks, gJs, gKs, converged, meta, X_H, label_names = contents
    #pickle.dump((Js, Ks, gJs, gKs, converged, meta, X_H, label_names), fp)

    print(f"label_names from {path}: {label_names}")

    # Get best model.
    J_best_mml, K_best_mml = grid_search.best(Js, Ks, meta["message_length"])
    model = meta["best_models"]["mml"]

    return model
Ejemplo n.º 3
0
A_target = A_astrophysical
#A_target = A_original
#A_target[:-2, 0] = 0
#A_target[-2:, 0] = 1

stored_models = []

for i, comparison_model_path in enumerate(comparison_model_paths):

    with open(comparison_model_path, "rb") as fp:
        contents = pickle.load(fp)

    Js, Ks, gJs, gKs, converged, meta, X_H, label_names = contents

    # Get best model.
    J_best_mml, K_best_mml = grid_search.best(Js, Ks, meta["message_length"])
    comparison_model = meta["best_models"]["mml"]

    # Perform rotation.
    A_est = comparison_model.theta_[comparison_model.parameter_names.index("A")]
    if A_est.shape == A_target.shape:

        for rotation in range(max_rotations):

            A_est = comparison_model.theta_[comparison_model.parameter_names.index("A")]

            R, p_opt, cov, *_ = utils.find_rotation_matrix(A_target, A_est, 
                                                           full_output=True)

            R_opt = utils.exact_rotation_matrix(A_target, A_est, 
                                                p0=np.random.uniform(-np.pi, np.pi, comparison_model.n_latent_factors**2))
Ejemplo n.º 4
0
    if config["subtract_mean"]:
        X = X - np.nanmean(X, axis=0)

    gJs, gKs, converged, meta = grid_search.grid_search(Js,
                                                        Ks,
                                                        X,
                                                        N_inits=N_inits,
                                                        mcfa_kwds=mcfa_kwds)

    # Plot the grid space.

    ll = meta["ll"]
    bic = meta["bic"]
    mml = meta["message_length"]

    J_best_ll, K_best_ll = grid_search.best(Js, Ks, -ll)
    J_best_bic, K_best_bic = grid_search.best(Js, Ks, bic)
    J_best_mml, K_best_mml = grid_search.best(Js, Ks, mml)

    print(
        f"Best log likelihood  for N = {size} at J = {J_best_ll} and K = {K_best_ll}"
    )
    print(
        f"Best BIC value found for N = {size} at J = {J_best_bic} and K = {K_best_bic}"
    )
    print(
        f"Best MML value found for N = {size} at J = {J_best_mml} and K = {K_best_mml}"
    )

    try:
        # Plot some contours.
Ejemplo n.º 5
0
max_n_latent_factors = gs_options["max_n_latent_factors"]
max_n_components = gs_options["max_n_components"]
N_inits = gs_options["n_inits"]

Js = 1 + np.arange(max_n_latent_factors)
Ks = 1 + np.arange(max_n_components)

Jg, Kg, converged, meta = grid_search.grid_search(Js, Ks, X, N_inits=N_inits,
                                                     mcfa_kwds=mcfa_kwds)

ll = meta["ll"]
bic = meta["bic"]
pseudo_bic = meta["pseudo_bic"]
message_length = meta["message_length"]

J_best_ll, K_best_ll = grid_search.best(Js, Ks, -ll)
J_best_bic, K_best_bic = grid_search.best(Js, Ks, bic)
J_best_mml, K_best_mml = grid_search.best(Js, Ks, message_length)

print(f"Best log likelihood  at J = {J_best_ll} and K = {K_best_ll}")
print(f"Best BIC value found at J = {J_best_bic} and K = {K_best_bic}")
print(f"Best MML value found at J = {J_best_mml} and K = {K_best_mml}")

# Plot some contours.
plot_filled_contours_kwds = dict(converged=converged,
                                 marker_function=np.nanargmin,
                                 cmap="Spectral_r")
fig_ll = mpl_utils.plot_filled_contours(Jg, Kg, -ll,
                                        colorbar_label=r"$-\log\mathcal{L}$",
                                        **plot_filled_contours_kwds)
savefig(fig_ll, "gridsearch-ll")