Ejemplo n.º 1
0
 def __init__(self, config):
     self.config = config
     _check_valid_config(self.config)
     config['param_str'] = '_'.join(
         ['{}_{}'.format(filesafe(k), v) for k, v in self.config['mc_opts'].items()])
     config['param_str'] += '_' + '_'.join(
         ['{}_{}'.format(filesafe(k), v) for k, v in self.config['dgp_opts'].items()])
     config['param_str'] += '_' + '_'.join(
         ['{}_{}'.format(filesafe(k), v) for k, v in self.config['method_opts'].items()])
     return
Ejemplo n.º 2
0
def plot_metric_comparisons(param_estimates, metric_results, config):
    for dgp_name, mdgp in metric_results.items():
        n_methods = len(list(mdgp.keys()))
        for metric_name in next(iter(mdgp.values())).keys():
            plt.figure(figsize=(1.5 * n_methods, 2.5))
            plt.violinplot([
                mdgp[method_name][metric_name] -
                mdgp[config['proposed_method']][metric_name]
                for method_name in mdgp.keys()
                if method_name != config['proposed_method']
            ],
                           showmedians=True)
            plt.xticks(np.arange(1, n_methods), [
                method_name for method_name in mdgp.keys()
                if method_name != config['proposed_method']
            ])
            plt.ylabel('decrease in {}'.format(metric_name))
            plt.tight_layout()
            plt.savefig(os.path.join(
                config['target_dir'],
                '{}_decrease_dgp_{}_{}.png'.format(filesafe(metric_name),
                                                   dgp_name,
                                                   config['param_str'])),
                        dpi=300)
            plt.close()
    return
Ejemplo n.º 3
0
def instance_plot(plot_name, param_estimates, metric_results, config,
                  plot_config):
    methods = plot_config['methods'] if 'methods' in plot_config else list(
        config['methods'].keys())
    metrics = plot_config['metrics'] if 'metrics' in plot_config else list(
        config['metrics'].keys())
    dgps = plot_config['dgps'] if 'dgps' in plot_config else list(
        config['dgps'].keys())
    metric_transforms = plot_config[
        'metric_transforms'] if 'metric_transforms' in plot_config else {
            '': mcpy.metrics.transform_identity
        }

    for tr_name, tr_fn in metric_transforms.items():
        for dgp_name in dgps:
            for metric_name in metrics:
                plt.figure(figsize=(1.5 * len(methods), 2.5))
                plt.violinplot([
                    tr_fn(metric_results, dgp_name, method_name, metric_name,
                          config) for method_name in methods
                ],
                               showmedians=True)
                plt.xticks(np.arange(1, len(methods) + 1), methods)
                plt.ylabel('{}({})'.format(tr_name, metric_name))
                plt.tight_layout()
                plt.savefig(os.path.join(
                    config['target_dir'],
                    '{}_{}_{}_dgp_{}_{}.png'.format(plot_name,
                                                    filesafe(metric_name),
                                                    tr_name, dgp_name,
                                                    config['param_str'])),
                            dpi=300)
                plt.close()
    return
Ejemplo n.º 4
0
def plot_raw(param_estimates, metric_results, config):
    for dgp_name, mdgp in metric_results.items():
        metric_name = 'raw'
        plt.figure()
        for it, method_name in enumerate(mdgp.keys()):
            if it == 0:
                true_params = np.array(mdgp[method_name][metric_name][0, :, 1])
                plt.plot(np.arange(true_params.shape[0]),
                         true_params,
                         '--',
                         label='true')

            res = np.array(mdgp[method_name][metric_name][:, :, 0])
            med_res = np.median(res, axis=0)
            lb_res = np.percentile(res, 5, axis=0)
            ub_res = np.percentile(res, 95, axis=0)
            line = plt.plot(np.arange(med_res.shape[0]),
                            med_res,
                            label=method_name)
            plt.fill_between(np.arange(med_res.shape[0]),
                             lb_res,
                             ub_res,
                             alpha=.4,
                             color=line[0].get_color())
        plt.legend()
        plt.tight_layout()
        plt.savefig(os.path.join(
            config['target_dir'],
            'raw_{}_dgp_{}_{}.png'.format(filesafe(metric_name), dgp_name,
                                          config['param_str'])),
                    dpi=300)
        plt.close()
    return
Ejemplo n.º 5
0
def sweep_plot_marginal_transformed_metric(transform_fn,
                                           transform_name,
                                           dgps,
                                           methods,
                                           metrics,
                                           plot_name,
                                           sweep_keys,
                                           sweep_params,
                                           sweep_metrics,
                                           config,
                                           param_subset={},
                                           select_vals={},
                                           filter_vals={}):

    sweeps = {}
    for dgp_key, dgp_val in config['dgp_opts'].items():
        if hasattr(dgp_val, "__len__"):
            sweeps[dgp_key] = dgp_val

    mask = _select_config_keys(sweep_keys, select_vals, filter_vals)
    if np.sum(mask) == 0:
        print("Filtering resulted in no valid configurations!")
        return

    for dgp in dgps:
        for metric in metrics:
            for param, param_vals in sweeps.items():
                if param_subset is not None and param not in param_subset:
                    continue
                plt.figure(figsize=(5, 3))
                for method in methods:
                    medians = []
                    mins = []
                    maxs = []
                    for val in param_vals:
                        subset = [
                            transform_fn(metrics, dgp, method, metric, config)
                            for key, metrics, ms in zip(
                                sweep_keys, sweep_metrics, mask)
                            if (param, val) in key and ms
                        ]
                        if len(subset) > 0:
                            grouped_results = np.concatenate(subset)
                            medians.append(np.median(grouped_results))
                            mins.append(np.percentile(grouped_results, 5))
                            maxs.append(np.percentile(grouped_results, 95))
                    line = plt.plot(param_vals, medians, label=method)
                    plt.fill_between(param_vals,
                                     maxs,
                                     mins,
                                     alpha=0.3,
                                     color=line[0].get_color())
                plt.legend()
                plt.xlabel(param)
                plt.ylabel('{}({})'.format(transform_name, metric))
                plt.tight_layout()
                plt.savefig(os.path.join(
                    config['target_dir'],
                    '{}_{}_{}_dgp_{}_growing_{}_{}.png'.format(
                        plot_name, filesafe(metric), transform_name, dgp,
                        filesafe(param), config['param_str'])),
                            dpi=300)
                plt.close()

            for param1, param2 in itertools.combinations(sweeps.keys(), 2):
                if param_subset is not None and (
                        param1, param2) not in param_subset and (
                            param2, param1) not in param_subset:
                    continue
                x, y, z = [], [], []
                for method_it, method in enumerate(methods):
                    x.append([]), y.append([]), z.append([])
                    for val1, val2 in itertools.product(
                            *[sweeps[param1], sweeps[param2]]):
                        subset = [
                            transform_fn(metrics, dgp, method, metric, config)
                            for key, metrics, ms in zip(
                                sweep_keys, sweep_metrics, mask)
                            if (param1, val1) in key and (param2,
                                                          val2) in key and ms
                        ]
                        if len(subset) > 0:
                            grouped_results = np.concatenate(subset)
                            x[method_it].append(val1)
                            y[method_it].append(val2)
                            z[method_it].append(np.median(grouped_results))
                vmin = np.min(z)
                vmax = np.max(z)
                fig, axes = plt.subplots(nrows=1,
                                         ncols=len(methods),
                                         figsize=(4 * len(methods), 3))
                if not hasattr(axes, '__len__'):
                    axes = [axes]
                for method_it, (method, ax) in enumerate(zip(methods, axes)):
                    xi = np.linspace(np.min(x[method_it]),
                                     np.max(x[method_it]),
                                     5 * len(x[method_it]))
                    yi = np.linspace(np.min(y[method_it]),
                                     np.max(y[method_it]),
                                     5 * len(y[method_it]))
                    xi, yi = np.meshgrid(xi, yi)
                    zi = griddata(
                        (np.array(x[method_it]), np.array(y[method_it])),
                        np.array(z[method_it]), (xi, yi),
                        method='linear')
                    ax.contour(xi, yi, zi, 15, linewidths=0.2, colors='k')
                    im = ax.pcolormesh(xi,
                                       yi,
                                       zi,
                                       cmap=plt.cm.Reds,
                                       vmin=vmin,
                                       vmax=vmax)
                    ax.contourf(xi,
                                yi,
                                zi,
                                15,
                                cmap=plt.cm.Reds,
                                vmin=vmin,
                                vmax=vmax)
                    ax.scatter(np.array(x[method_it]),
                               np.array(y[method_it]),
                               alpha=0.5,
                               s=3,
                               c='b')
                    ax.set_xlabel(param1)
                    ax.set_ylabel(param2)
                    ax.set_title(method)

                plt.tight_layout()
                fig.subplots_adjust(right=0.8)
                cbar_ax = fig.add_axes([0.81, 0.15, 0.02, 0.72])
                cbar = fig.colorbar(im, cax=cbar_ax)
                cbar.ax.tick_params(labelsize=8)
                cbar.ax.set_ylabel('median {}({})'.format(
                    transform_name, metric))
                plt.savefig(os.path.join(
                    config['target_dir'],
                    '{}_{}_{}_dgp_{}_growing_{}_and_{}_{}.png'.format(
                        plot_name, filesafe(metric), transform_name, dgp,
                        filesafe(param1), filesafe(param2),
                        config['param_str'])),
                            dpi=300)
                plt.close()