Ejemplo n.º 1
0
def two_agents_without_interaction_common_playground_123(params):
    strt_pnt_A = '16'
    strt_pnt_B = '23'
    end_pnt_A = '23'
    end_pnt_B = '16'
    P = md.get_meshgrid_points(params)
    x, y, z = get_xyz(P)
    # Topology
    T, S = md.get_simple_topology_for_regular_grid(params, P)
    # rewards
    R_A = {end_pnt_A: 100}
    R_B = {end_pnt_B: 100}
    mdp_challenge_A = {'S': S, 'R': R_A, 'T': T, 'P': P}
    mdp_challenge_B = {'S': S, 'R': R_B, 'T': T, 'P': P}

    dict_mdp_A = md.start_mdp(params, mdp_challenge_A)
    dict_mdp_B = md.start_mdp(params, mdp_challenge_B)

    optimal_traj_A = md.get_deterministic_trajectory(strt_pnt_A,
                                                     dict_mdp_A,
                                                     steps=20)
    optimal_traj_B = md.get_deterministic_trajectory(strt_pnt_B,
                                                     dict_mdp_B,
                                                     steps=20)

    interpolated_points_A, points_A = md.get_result_trajectories_mdp(
        params, optimal_traj_A, P)
    interpolated_points_B, points_B = md.get_result_trajectories_mdp(
        params, optimal_traj_B, P)
    path_A = interpolated_points_A['quadratic']
    path_B = interpolated_points_B['quadratic']
    return path_A, path_B
Ejemplo n.º 2
0
def only_mdp(params):
    strt_pnt = '16'
    P = md.get_meshgrid_points(params)
    x, y, z = get_xyz(P)
    # Topology
    T, S = md.get_simple_topology_for_regular_grid(params, P)
    # rewards
    R = {'23': 100}
    mdp_challenge = {'S': S, 'R': R, 'T': T, 'P': P}
    dict_mdp = md.start_mdp(params, mdp_challenge)
    reach_set = md.reach_n_steps(strt_pnt,
                                 mdp_challenge,
                                 dict_mdp,
                                 params,
                                 steps=10)
    optimal_traj = md.get_deterministic_trajectory(strt_pnt,
                                                   dict_mdp,
                                                   steps=20)
    print_info(dict_mdp, optimal_traj)
    plot_topology(x, y, dict_mdp)
    plot_arrows_path(x, y, optimal_traj)
    scatter_value_function(x, y, np.array(dict_mdp['U']), dict_mdp, R)
    plt_show()
Ejemplo n.º 3
0
import manifold_plotter as mp
import md_pro as md
import matplotlib.pyplot as plt

mygrid = {
    "x_grid": 5,
    "y_grid": 4,
    "x_min": -10,
    "x_max": 10,
    "y_min": -7.5,
    "y_max": 7.5
}

# points
P = md.get_meshgrid_points(**mygrid)
# plot the nodes
mp.plot_patches(P)
plt.show()