Ejemplo n.º 1
0
 def insert_dividends(self):
     print( "Insert new dividends" )
     mdb_query = Query()
     iex = Iex()
     #Get all symbols in MongoDB
     #mdb_symbols = mdb_query.get_active_companies()
     #Get current date
     currDate = datetime.datetime.now().strftime("%Y-%m-%d")
 
     #Get existing portfolios
     portfolios = mdb_query.get_portfolios(currDate)[["portfolioID","inceptionDate"]]
     #Loop through portfolios
     mdb_symbols = pandas.DataFrame()
     for portfolio_index, portfolio_row in portfolios.iterrows():
         #Get portfolioID and inceptionDate
         portfolio = portfolio_row['portfolioID']
         inceptionDate = portfolio_row['inceptionDate']
         #Default to calculating holdings from inception
         date = inceptionDate
         #Get current holdings table
         holdings = mdb_query.get_holdings(portfolio, inceptionDate, "after")
         #print( holdings )
         mdb_symbols = mdb_symbols.append(holdings, ignore_index=True, sort=False)
         #print( mdb_symbols )
     mdb_symbols = mdb_symbols[mdb_symbols['symbol'] != 'USD']
     mdb_symbols = mdb_symbols['symbol'].unique().tolist()
     #print( mdb_symbols )
     #quit()
 
     #Get latest dividend in MongoDB for each symbol
     mdb_dividends = mdb_query.get_dividends( mdb_symbols, currDate, "latest" )
     #Initial call to print 0% progress
     printProgressBar(0, len(mdb_symbols), prefix = 'Progress:', suffix = '', length = 50)
     #flag = False
     #Loop through symbols
     for index, mdb_symbol in enumerate(mdb_symbols):
         #if mdb_symbol["symbol"] == "ZZZZZZZZZ":
         #    flag = True
         #if not flag:
         #    continue
         #Get 1m of dividends from IEX
         iex_dividends = iex.get_dividends( mdb_symbol, ref_range='1m' )
         #Get matching dividend in MongoDB
         mdb_dividend = mdb_dividends[ mdb_dividends['symbol'] == mdb_symbol ]
         #Select dividends more recent than MongoDB
         if not mdb_dividend.empty and not iex_dividends.empty:
             mask = iex_dividends['exDate'] > mdb_dividend['exDate'].iloc[0]
             iex_dividends = iex_dividends.loc[mask]
         #Insert if dividends exist
         if not iex_dividends.empty:
             #Update progress bar
             printProgressBar(index+1, len(mdb_symbols), prefix = 'Progress:', suffix = "Inserting dividend for " + mdb_symbol + "      ", length = 50)
             #print( iex_dividends )
             self.db.iex_dividends.insert_many( iex_dividends.to_dict('records') )
         else:
             #Update progress bar
             printProgressBar(index+1, len(mdb_symbols), prefix = 'Progress:', suffix = "No new data for " + mdb_symbol + "      ", length = 50)
 def pf_sell_all(self, ref_date="1990-01-01"):
     """
     Sell all holdings on a particular date
     @params:
         ref_date    - Optional  : date YYYY-MM-DD (Str)
     """
     mdb_query = Query()
     #Get link to MongoDB
     #Get date for stock prices
     dayBeforeDate = (pandas.Timestamp(ref_date) +
                      pandas.DateOffset(days=-1)).strftime('%Y-%m-%d')
     #Get existing portfolios
     portfolios = mdb_query.get_portfolios(ref_date)[[
         "portfolioID", "inceptionDate"
     ]]
     #Loop through portfolios
     for portfolio_index, portfolio_row in portfolios.iterrows():
         #Get portfolioID and inceptionDate
         portfolio = portfolio_row['portfolioID']
         #Get holdings table
         holdings = mdb_query.get_holdings(portfolio, ref_date, "on")
         #Get latest prices from dayBeforeDate
         prices = mdb_query.get_chart(holdings['symbol'].tolist(),
                                      dayBeforeDate, 'latest')
         #Merge prices with holdings
         holdings = pandas.merge(holdings,
                                 prices,
                                 how='left',
                                 left_on=['symbol'],
                                 right_on=['symbol'],
                                 sort=False)
         #Remove USD
         holdings = holdings[holdings['symbol'] != 'USD']
         #print( holdings )
         #Build transaction tables which sell the stocks
         transaction_tables = []
         #Loop through stocks to be sold
         for index, stock in holdings.iterrows():
             #Transaction tables: type = sell, date = ref_date, price = close, volume = endOfDayQuantity
             transaction_table = {
                 "portfolioID": portfolio_row.portfolioID,
                 "symbol": stock.symbol,
                 "type": "sell",
                 "date": ref_date,
                 "price": stock.close,
                 "volume": stock.endOfDayQuantity,
                 "commission": 0.0
             }
             transaction_tables.append(transaction_table)
         insert_pf_transactions = True
         if insert_pf_transactions:
             #print( transaction_tables )
             self.db.pf_transactions.insert_many(transaction_tables)
 def pf_buy_all(self, ref_date="1990-01-01"):
     """
     Buy all stocks in the top stocks list on a particular date
     @params:
         ref_date    - Optional  : date YYYY-MM-DD (Str)
     """
     mdb_query = Query()
     #Get link to MongoDB
     #Get date for stock prices
     dayBeforeDate = (pandas.Timestamp(ref_date) +
                      pandas.DateOffset(days=-1)).strftime('%Y-%m-%d')
     #Get ranked stock list for current date
     top_stocks_full = calculate_top_stocks(dayBeforeDate)
     #Get existing portfolios
     portfolios = mdb_query.get_portfolios(ref_date)
     #Loop through portfolios
     for portfolio_index, portfolio_row in portfolios.iterrows():
         #Get holdings table
         holdings = mdb_query.get_holdings(portfolio_row.portfolioID,
                                           ref_date, "on")
         holdings_usd = holdings[holdings['symbol'] == 'USD']
         holdings_usd.reset_index(drop=True, inplace=True)
         top_stocks = top_stocks_full[
             top_stocks_full['marketCap'] > portfolio_row.mcapMinimum].head(
                 portfolio_row.nStocks).reset_index(drop=True)
         transaction_tables = []
         #Loop through stocks to be purchased
         for index, stock in top_stocks.iterrows():
             #Calculate volume of stock to be purchased
             #(Current USD holding/No. of stocks)/Price rounded to integer
             volume = holdings_usd.endOfDayQuantity.iloc[0]
             volume = volume / portfolio_row.nStocks
             volume = volume / stock.close
             volume = round(volume)
             transaction_table = {
                 "portfolioID": portfolio_row.portfolioID,
                 "symbol": stock.symbol,
                 "type": "buy",
                 "date": ref_date,
                 "price": stock.close,
                 "volume": volume,
                 "commission": 0.0
             }
             transaction_tables.append(transaction_table)
         insert_pf_transactions = True
         if insert_pf_transactions:
             self.db.pf_transactions.insert_many(transaction_tables)
Ejemplo n.º 4
0
 def insert_performance(self):
     print( "Insert portfolio performance tables" )
     mdb_query = Query()
     #Get current date
     currDate = datetime.datetime.now().strftime("%Y-%m-%d")
     #currDate = "2019-12-27"
     #Get existing portfolios
     portfolios = mdb_query.get_portfolios(currDate)[["portfolioID","inceptionDate"]]
     #Loop through portfolios
     for portfolio_index, portfolio_row in portfolios.iterrows():
         #Get portfolioID and inceptionDate
         portfolio = portfolio_row.portfolioID
         inceptionDate = portfolio_row.inceptionDate
         print( 'Inserting performance tables for ' + portfolio )
         #Get holdings tables from inception
         holdings = mdb_query.get_holdings(portfolio, inceptionDate, "after").sort_values(by="lastUpdated", ascending=False, axis="index")
         #print( holdings )
         #Default to calculating performance from inception
         date = inceptionDate
         #Get list of symbols in holdings table
         symbols = holdings["symbol"].unique().tolist()
         #Get existing performance table for portfolio sorted by date
         performance = mdb_query.get_performance([portfolio], inceptionDate)
         if not performance.empty:
             performance.sort_values(by="date", ascending=False, axis="index", inplace=True)
         #Get close value from last date and increment the date
         perf_tables = []
         prevCloseValue = 0
         adjPrevCloseValue = 0
         if not performance.empty:
             date = performance.iloc[0]["date"]
             date = (pandas.Timestamp(date) + pandas.DateOffset(days=1)).strftime('%Y-%m-%d')
             adjPrevCloseValue = performance.iloc[0]["closeValue"]
             prevCloseValue = performance.iloc[0]["closeValue"]
         #print( date )
         #Get prices for symbols in portfolio after date
         prices = mdb_query.get_quotes(symbols, date, "after")
         #print( prices )
         #If there are no prices then can't calculate performance
         if prices.empty:
             print( "No prices!" )
             continue
         #Get any transactions after date
         transactions = mdb_query.get_transactions(portfolio, date, "after")
         #print( transactions )
         #Loop through dates
         while date <= currDate:
             #print( date )
             #Initialize portfolio close of day values
             closeValue = 0
             adjCloseValue = 0
             #Get latest holding for each symbol on date
             holdings_date = holdings[holdings.lastUpdated <= date]
             holdings_date = holdings_date[holdings_date.groupby(['symbol'], sort=False)['lastUpdated'].transform(max) == holdings_date['lastUpdated']]
             #Merge with stock prices
             holdings_date = pandas.merge(holdings_date,prices[prices.date == date],how='left',left_on=["symbol"],right_on=["symbol"],sort=False)
             #Remove stocks no longer held
             holdings_date = holdings_date[ holdings_date['endOfDayQuantity'] != 0 ]
             #print( holdings_date )
             #Skip if only USD in holdings
             if holdings_date[holdings_date.symbol != "USD"].empty:
                 date = (pandas.Timestamp(date) + pandas.DateOffset(days=1)).strftime('%Y-%m-%d')
                 continue
             #Skip any day where there aren't prices for all stocks
             if holdings_date[holdings_date.symbol != "USD"]['close'].isnull().values.any():
                 date = (pandas.Timestamp(date) + pandas.DateOffset(days=1)).strftime('%Y-%m-%d')
                 continue
             #Calculate portfolio close of day value from close of day stock prices
             if not holdings_date.empty:
                 for index, holding in holdings_date.iterrows():
                     if holding.symbol == "USD":
                         closeValue = closeValue + (holding.endOfDayQuantity)
                     else:
                         closeValue = closeValue + (holding.endOfDayQuantity * holding.close)
             #Get any deposits or withdrawals
             deposits = pandas.DataFrame()
             withdrawals = pandas.DataFrame()
             if not transactions.empty:
                 deposits = transactions[(transactions.date == date) & (transactions.type == "deposit")]
                 withdrawals = transactions[(transactions.date == date) & (transactions.type == "withdrawal")]
             #print( deposits )
             #print( withdrawals )
             #Adjust close or previous close for withdrawals/deposits
             adjPrevCloseValue = prevCloseValue
             adjCloseValue = closeValue
             if not deposits.empty:
                 for index, deposit in deposits.iterrows():
                     adjPrevCloseValue = adjPrevCloseValue + (deposit.volume * deposit.price)
             if not withdrawals.empty:
                 for index, withdrawal in withdrawals.iterrows():
                     adjCloseValue = adjCloseValue + (withdrawal.volume * withdrawal.price)
             #If portfolio has no holdings or deposits yet then continue
             if adjPrevCloseValue == 0:
                 date = (pandas.Timestamp(date) + pandas.DateOffset(days=1)).strftime('%Y-%m-%d')
                 continue
             #Build portfolio performance table
             perf_table = { "portfolioID": portfolio,
                             "date": date,
                             "prevCloseValue": prevCloseValue,
                             "closeValue": closeValue,
                             "adjPrevCloseValue": adjPrevCloseValue,
                             "adjCloseValue": adjCloseValue,
                             "percentReturn": 100.*((adjCloseValue-adjPrevCloseValue)/adjPrevCloseValue) }
             perf_tables.append( perf_table )
             #Reset previous close values
             prevCloseValue = closeValue
             adjPrevCloseValue = closeValue
             #Increment date
             date = (pandas.Timestamp(date) + pandas.DateOffset(days=1)).strftime('%Y-%m-%d')
         #Insert performance table
         insert_pf_performance = True
         #print( perf_tables )
         if insert_pf_performance and len(perf_tables)>0:
             #print( perf_tables )
             self.db.pf_performance.insert_many( perf_tables )
Ejemplo n.º 5
0
 def insert_holdings(self):
     print( "Calculate portfolio holdings" )
     mdb_query = Query()
     #Get current date
     currDate = datetime.datetime.now().strftime("%Y-%m-%d")
     #currDate = "2019-12-30"
     #Get existing portfolios
     portfolios = mdb_query.get_portfolios(currDate)[["portfolioID","inceptionDate"]]
     #Loop through portfolios
     for portfolio_index, portfolio_row in portfolios.iterrows():
         #Get portfolioID and inceptionDate
         portfolio = portfolio_row['portfolioID']
         inceptionDate = portfolio_row['inceptionDate']
         print( 'Calculating holdings for ', portfolio )
         #Default to calculating holdings from inception
         date = inceptionDate
         #Get current holdings table
         holdings = mdb_query.get_holdings(portfolio, currDate, "on")
         #print( holdings )
         #If holdings exist then calculate holdings from next date
         if not holdings.empty:
             date = holdings['lastUpdated'].max()
             date = (pandas.Timestamp(date) + pandas.DateOffset(days=1)).strftime('%Y-%m-%d')
         #If no existing holdings create 0 dollar entry to create table
         if holdings.empty:
             holding_dict = { "portfolioID": portfolio,
                                 "symbol": "USD",
                                 "endOfDayQuantity": 0.0,
                                 "lastUpdated": inceptionDate }
             holdings = pandas.DataFrame.from_dict(holding_dict, orient='index').T
         #Get all new transactions
         transactions = mdb_query.get_transactions(portfolio, date, "after")
 
         #Loop through dates and update holdings table
         while date <= currDate:
 
             #Insert dividends to transactions database and update transactions table
             #Dividends will be ahead of time so will be ready to be added on the correct date
 
             #Get dividends for all holdings except USD
             div_holdings = holdings[ ~holdings["symbol"].isin(["USD"]) ]
             dividends = mdb_query.get_dividends(div_holdings["symbol"].unique().tolist(), date, "on")
             #Get rid of any non-USD dividends
             if not dividends.empty:
                 dividends = dividends[ dividends['currency'] == 'USD' ]
 
             if not dividends.empty:
                 #Get dividends with exDate = date
                 div_date = dividends[ dividends.exDate == date ]
                 #Loop through dividends
                 for d_index, dividend in div_date.iterrows():
                     #print( dividend )
                     #Is dividend already in transactions?
                     #If not insert it
                     #Skip dividends with bad data entries
                     if not dividend.amount:
                         print( "Skipping dividend as amount is empty!" )
                         continue
                     if dividend.paymentDate == None:
                         print( "Skipping dividend as paymentDate is None!" )
                         continue
                     transactions_paymentDate = transactions
                     if not transactions.empty:
                         transactions_paymentDate = transactions[ (transactions.date == dividend.paymentDate) & (transactions.symbol == dividend.symbol) & (transactions.type == 'dividend') ]
                     holding_quantity = holdings[holdings["symbol"] == dividend.symbol]["endOfDayQuantity"]
                     holding_quantity.reset_index(drop=True, inplace=True)
                     if transactions_paymentDate.empty and (holding_quantity != 0).any():
                         transaction_table = { "portfolioID": portfolio,
                                                 "symbol": dividend.symbol,
                                                 "type": "dividend",
                                                 "date": dividend.paymentDate,
                                                 "price": float(dividend.amount),
                                                 "volume": holding_quantity.iloc[0],
                                                 "commission": 0.0 }
                         transactions = transactions.append( pandas.DataFrame.from_dict(transaction_table, orient='index').T, ignore_index=True, sort=False )
                         insert_pf_transactions = True
                         if insert_pf_transactions:
                             print( "Inserting dividend: " + date )
                             print( transaction_table )
                             self.db.pf_transactions.insert_one( transaction_table )
 
             #Now attend to transactions on date
             if transactions.empty:
                 #Increment date
                 date = (pandas.Timestamp(date) + pandas.DateOffset(days=1)).strftime('%Y-%m-%d')
                 continue
             transactions_date = transactions[transactions.date == date]
             #Loop through transactions
             for t_index, transaction in transactions_date.iterrows():
                 print( "Inserting transaction:" )
                 print( transaction )
                 #Get any existing holding for the transaction symbol
                 if transaction.type == "dividend":
                     holding = holdings[holdings.symbol == "USD"]
                 else:
                     holding = holdings[holdings.symbol == transaction.symbol]
                 holding.reset_index(drop=True, inplace=True)
                 #print( holding )
                 #Remove that holding from holdings table
                 if not holding.empty:
                     holdings = holdings[ ~holdings["symbol"].isin([holding['symbol'].iloc[0]]) ]
                 #print( holdings )
                 #Add any dividends to the holdings table
                 if transaction.type == "dividend":
                     holding["endOfDayQuantity"] = holding["endOfDayQuantity"] + (transaction.price * transaction.volume)
                     holding["lastUpdated"] = date
                     holdings = holdings.append( holding, ignore_index=True, sort=False )
                 #Add any deposits to the holdings table
                 if transaction.type == "deposit":
                     holding["endOfDayQuantity"] = holding["endOfDayQuantity"] + (transaction.price * transaction.volume)
                     holding["lastUpdated"] = date
                     holdings = holdings.append( holding, ignore_index=True, sort=False )
                 #Add any stocks purchased to the holdings table
                 if transaction.type == "buy":
                     holding_dict = {}
                     if not holding.empty:
                         holding_dict = { "portfolioID": transaction.portfolioID,
                                          "symbol": transaction.symbol,
                                          "endOfDayQuantity": holding["endOfDayQuantity"].iloc[0] + transaction.volume,
                                          "lastUpdated": date }
                     else:
                         holding_dict = { "portfolioID": transaction.portfolioID,
                                          "symbol": transaction.symbol,
                                          "endOfDayQuantity": transaction.volume,
                                          "lastUpdated": date }
                     #print( holding_dict )
                     holdings = holdings.append( pandas.DataFrame.from_dict(holding_dict, orient='index').T, ignore_index=True, sort=False )
                     #Adjust cash entry accordingly
                     cash = holdings[holdings.symbol == "USD"]
                     holdings = holdings[ ~holdings["symbol"].isin(["USD"]) ]
                     cash["endOfDayQuantity"] = cash["endOfDayQuantity"] - (transaction.price * transaction.volume)
                     cash["lastUpdated"] = date
                     holdings = holdings.append( cash, ignore_index=True, sort=False )
                 #print( holdings )
                 #Remove any stocks sold from the holdings table
                 if transaction.type == "sell":
                     if not holding.empty:
                         holding["endOfDayQuantity"] = holding["endOfDayQuantity"] - transaction.volume
                         holding["lastUpdated"] = date
                         holdings = holdings.append( holding, ignore_index=True, sort=False )
                     else:
                         raise Exception("Trying to sell unowned stock!")
                     #Adjust cash entry accordingly
                     cash = holdings[holdings.symbol == "USD"]
                     holdings = holdings[ ~holdings["symbol"].isin(["USD"]) ]
                     cash["endOfDayQuantity"] = cash["endOfDayQuantity"] + (transaction.price * transaction.volume)
                     cash["lastUpdated"] = date
                     holdings = holdings.append( cash, ignore_index=True, sort=False )
                 #print( holdings )
             #Upload new holdings entries to MongoDB
             holdings_date = holdings[holdings.lastUpdated == date]
             if not holdings_date.empty:
                 print( "New holdings:" )
                 print( holdings_date )
                 insert_holdings_tx = True
                 if insert_holdings_tx:
                     print( "Inserting holdings for " + portfolio )
                     self.db.pf_holdings.insert_many( holdings_date.to_dict('records') )
             #Increment date
             date = (pandas.Timestamp(date) + pandas.DateOffset(days=1)).strftime('%Y-%m-%d')