def func(subject_info, output_path):
    subject_id = subject_info.subject_id

    for model_name in model_names:
        print(subject_id, model_name)

        starting_point = mdt.fit_model(model_name,
                                       subject_info.get_input_data(),
                                       output_path + '/' + subject_id)

        with mdt.config_context('''
            processing_strategies:
                sampling:
                    max_nmr_voxels: 5000
        '''):
            mdt.sample_model(model_name,
                             subject_info.get_input_data(),
                             output_path + '/' + subject_info.subject_id,
                             nmr_samples=nmr_samples[model_name],
                             initialization_data={'inits': starting_point},
                             store_samples=False)

    wm_mask = generate_simple_wm_mask(os.path.join(output_path, subject_id, 'Tensor', 'Tensor.FA.nii.gz'),
                                      subject_info.get_input_data().mask,
                                      threshold=0.3,
                                      median_radius=3,
                                      nmr_filter_passes=4)
    mdt.write_nifti(wm_mask, os.path.join(output_path, subject_id, 'wm_mask'))
Ejemplo n.º 2
0
    def run(self, args, extra_args):
        mask_name = os.path.splitext(
            os.path.basename(os.path.realpath(args.mask)))[0]
        mask_name = mask_name.replace('.nii', '')
        output_folder = args.output_folder or os.path.join(
            os.path.dirname(args.dwi), 'output', mask_name)

        tmp_results_dir = args.tmp_results_dir
        for match, to_set in [('true', True), ('false', False),
                              ('none', None)]:
            if tmp_results_dir.lower() == match:
                tmp_results_dir = to_set
                break

        noise_std = args.noise_std
        if noise_std is not None:
            if not os.path.isfile(os.path.realpath(noise_std)):
                noise_std = float(noise_std)

        def fit_model():
            input_data = mdt.lib.input_data.load_input_data(
                os.path.realpath(args.dwi),
                os.path.realpath(args.protocol),
                os.path.realpath(args.mask),
                gradient_deviations=args.gradient_deviations,
                noise_std=noise_std,
                extra_protocol=get_extra_protocol(args.extra_protocol,
                                                  os.path.realpath('')))

            optimizer_options = {}
            if args.patience is not None:
                optimizer_options['patience'] = args.patience

            mdt.fit_model(args.model,
                          input_data,
                          output_folder,
                          method=args.method,
                          optimizer_options=optimizer_options,
                          recalculate=args.recalculate,
                          cl_device_ind=args.cl_device_ind,
                          double_precision=args.double_precision,
                          tmp_results_dir=tmp_results_dir,
                          use_cascaded_inits=args.use_cascaded_inits)

        if args.config_context:
            with mdt.config_context(args.config_context):
                fit_model()
        else:
            fit_model()
Ejemplo n.º 3
0
    def run(self, args, extra_args):
        mask_name = os.path.splitext(
            os.path.basename(os.path.realpath(args.mask)))[0]
        mask_name = mask_name.replace('.nii', '')
        output_folder = args.output_folder or os.path.join(
            os.path.dirname(args.dwi), 'output', mask_name)

        tmp_results_dir = args.tmp_results_dir
        for match, to_set in [('true', True), ('false', False),
                              ('none', None)]:
            if tmp_results_dir.lower() == match:
                tmp_results_dir = to_set
                break

        noise_std = args.noise_std
        if noise_std is not None:
            if not os.path.isfile(os.path.realpath(noise_std)):
                noise_std = float(noise_std)

        def fit_model():
            mdt.fit_model(args.model,
                          mdt.load_input_data(
                              os.path.realpath(args.dwi),
                              os.path.realpath(args.protocol),
                              os.path.realpath(args.mask),
                              gradient_deviations=args.gradient_deviations,
                              noise_std=noise_std,
                              protocol_maps=get_protocol_maps(
                                  args.protocol_maps, os.path.realpath(''))),
                          output_folder,
                          recalculate=args.recalculate,
                          only_recalculate_last=args.only_recalculate_last,
                          cl_device_ind=args.cl_device_ind,
                          double_precision=args.double_precision,
                          cascade_subdir=args.cascade_subdir,
                          tmp_results_dir=tmp_results_dir,
                          save_user_script_info=None)

        if args.config_context:
            with mdt.config_context(args.config_context):
                fit_model()
        else:
            fit_model()
Ejemplo n.º 4
0
def CHARMED(dwi, mask):
    import mdt
    import os
    import nibabel as nib
    from mdt.configuration import SetGeneralOptimizer

    protocol = '/media/amr/HDD/Work/October_Acquistion/MDT_multishell_protocol.prtcl'
    model = 'CHARMED_r2 (Cascade|fixed)'
    algorithm = 'Levenberg-Marquardt'
    patience = 100
    output_folder = os.getcwd()

    input_data = mdt.load_input_data(dwi,
                                     protocol,
                                     mask,
                                     noise_std=5,
                                     gradient_deviations=None,
                                     extra_protocol={})

    with mdt.config_context(
            SetGeneralOptimizer(algorithm, settings={'patience': patience})):
        mdt.fit_model(model,
                      input_data,
                      output_folder,
                      recalculate=True,
                      only_recalculate_last=True,
                      double_precision=False,
                      cl_device_ind=[0])

    os.chdir('CHARMED_r2')

    CHARMED_FA = os.path.abspath('Tensor.FA.nii.gz')
    CHARMED_MD = os.path.abspath('Tensor.MD.nii.gz')
    CHARMED_AD = os.path.abspath('Tensor.AD.nii.gz')
    CHARMED_RD = os.path.abspath('Tensor.RD.nii.gz')

    CHARMED_FR = os.path.abspath('FR.nii.gz')

    #I assumed that CHARMEDRestricted0.d to be the intra-axonal diffusvity
    CHARMED_IAD = os.path.abspath('CHARMEDRestricted0.d.nii.gz')

    return CHARMED_FA, CHARMED_MD, CHARMED_AD, CHARMED_RD, CHARMED_FR, CHARMED_IAD
def mcmc_sample(subject_info):
    output_folder = subject_info.data_folder[:-1] + '_output'
    subject_id = subject_info.subject_id

    for model_name in model_names:
        print(subject_id, model_name)

        starting_point = mdt.fit_model(model_name,
                                       subject_info.get_input_data(),
                                       output_folder + '/' + subject_id)

        with mdt.config_context('''
            processing_strategies:
                sampling:
                    max_nmr_voxels: 5000
        '''):
            mdt.sample_model(model_name,
                             subject_info.get_input_data(),
                             output_folder + '/' + subject_id,
                             nmr_samples=nmr_samples[model_name],
                             initialization_data={'inits': starting_point},
                             store_samples=False)
                      snr)

                noise_std = simulations_unweighted_signal_height / snr
                current_pjoin = pjoin.create_extended(protocol_name,
                                                      model_name)

                input_data = mdt.load_input_data(
                    current_pjoin('noisy_signals_{}.nii'.format(snr)),
                    pjoin(protocol_name + '.prtcl'),
                    current_pjoin('mask.nii'),
                    noise_std=noise_std)

                fit_results = mdt.fit_model(
                    model_name + ' (Cascade)', input_data,
                    current_pjoin('output', str(snr), str(trial_ind)))

                with mdt.config_context('''
                    processing_strategies:
                        sampling:
                            max_nmr_voxels: 5000
                '''):
                    mdt.sample_model(
                        model_name,
                        input_data,
                        current_pjoin('output', str(snr), str(trial_ind)),
                        nmr_samples=nmr_samples[model_name],
                        burnin=1000,
                        thinning=0,
                        initialization_data={'inits': fit_results},
                        store_samples=False)