Ejemplo n.º 1
0
 def __init__(self):
     super(GPR, self).__init__()
     self.meanfunc = mean.Zero()  # default prior mean
     self.covfunc = cov.RBF()  # default prior covariance
     self.likfunc = lik.Gauss()  # likihood with default noise variance 0.1
     self.inffunc = inf.Exact()  # inference method
     self.optimizer = opt.Minimize(self)  # default optimizer
Ejemplo n.º 2
0
 def __init__(self):
     super(GPC, self).__init__()
     self.meanfunc = mean.Zero()  # default prior mean
     self.covfunc = cov.RBF()  # default prior covariance
     self.likfunc = lik.Erf()  # erf likihood
     self.inffunc = inf.EP()  # default inference method
     self.optimizer = opt.Minimize(self)  # default optimizer
Ejemplo n.º 3
0
 def __init__(self):
     super(GPC_FITC, self).__init__()
     self.meanfunc = mean.Zero()  # default prior mean
     self.covfunc = cov.RBF()  # default prior covariance
     self.likfunc = lik.Erf()  # erf liklihood
     self.inffunc = inf.FITC_EP()  # default inference method
     self.optimizer = opt.Minimize(self)  # default optimizer
     self.u = None  # no default inducing points
Ejemplo n.º 4
0
 def __init__(self, n_class):
     self.meanfunc = mean.Zero()  # default prior mean
     self.covfunc = cov.RBF()  # default prior covariance
     self.n_class = n_class  # number of different classes
     self.x_all = None
     self.y_all = None
     self.newInf = None  # new inference? -> call useInference
     self.newLik = None  # new likelihood? -> call useLikelihood
     self.newPrior = False