Ejemplo n.º 1
0
def rpath_ref_idx(ts_dct, scn_vals, coord_name, scn_prefix, ene_info1,
                  ene_info2):
    """ Get the reference energy along a reaction path
    """

    # Set up the filesystem
    zma_fs = autofile.fs.zmatrix(scn_prefix)
    zma_path = zma_fs[-1].path([0])
    scn_fs = autofile.fs.scan(zma_path)

    ene_info1 = ene_info1[1][0][1]
    ene_info2 = ene_info2[0]
    ioprinter.debug_message('mod_eneinf1', ene_info1)
    ioprinter.debug_message('mod_eneinf2', ene_info2)
    mod_ene_info1 = tinfo.modify_orb_label(sinfo.from_dct(ts_dct), ene_info1)
    mod_ene_info2 = tinfo.modify_orb_label(sinfo.from_dct(ts_dct), ene_info2)

    ene1, ene2, ref_val = None, None, None
    for val in reversed(scn_vals):
        locs = [[coord_name], [val]]
        path = scn_fs[-1].path(locs)
        hs_fs = autofile.fs.high_spin(path)
        if hs_fs[-1].file.energy.exists(mod_ene_info1[1:4]):
            ene1 = hs_fs[-1].file.energy.read(mod_ene_info1[1:4])
        if hs_fs[-1].file.energy.exists(mod_ene_info2[1:4]):
            ene2 = hs_fs[-1].file.energy.read(mod_ene_info2[1:4])
        if ene1 is not None and ene2 is not None:
            ref_val = val
            break

    if ref_val is not None:
        scn_idx = scn_vals.index(ref_val)

    return scn_idx, ene1, ene2
Ejemplo n.º 2
0
def set_rpath_filesys(ts_dct, level):
    """ Gets filesystem objects for reading many calculations
    """

    # Set the spc_info
    spc_info = sinfo.from_dct(ts_dct)

    # Set some path stuff
    save_path = ts_dct['rxn_fs'][3]
    run_path = ts_dct['rxn_fs'][2]

    # Set theory filesystem used throughout
    thy_save_fs = autofile.fs.theory(save_path)
    thy_run_fs = autofile.fs.theory(run_path)

    levelp = tinfo.modify_orb_label(level[1], spc_info)

    # Get the save fileystem path
    save_path = thy_save_fs[-1].path(levelp[1:4])
    run_path = thy_run_fs[-1].path(levelp[1:4])

    thy_save_fs[-1].create(levelp[1:4])
    thy_run_fs[-1].create(levelp[1:4])

    thy_save_path = thy_save_fs[-1].path(levelp[1:4])
    thy_run_path = thy_run_fs[-1].path(levelp[1:4])

    ts_save_fs = autofile.fs.transition_state(thy_save_path)
    ts_save_fs[0].create()
    ts_save_path = ts_save_fs[0].path()
    ts_run_fs = autofile.fs.transition_state(thy_run_path)
    ts_run_fs[0].create()
    ts_run_path = ts_run_fs[0].path()

    return ts_run_path, ts_save_path, thy_run_path, thy_save_path
Ejemplo n.º 3
0
def thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix):
    """ Set up the path for saving the pf input and output.
        Placed in a MESSPF, NASA dirs high in run filesys.
    """

    thm_paths = []
    for spc_name in spc_queue:
        thm_path = {}
        for idx, mod in enumerate(spc_mods):
            spc_info = sinfo.from_dct(spc_dct[spc_name])
            spc_formula = automol.inchi.formula_string(spc_info[0])
            thm_prefix = [spc_formula, automol.inchi.inchi_key(spc_info[0])]
            print('thm_prefix test:', thm_prefix)
            thm_path[mod] = (job_path(run_prefix,
                                      'MESS',
                                      'PF',
                                      thm_prefix,
                                      locs_idx=idx),
                             job_path(run_prefix,
                                      'THERM',
                                      'NASA',
                                      thm_prefix,
                                      locs_idx=idx))
        thm_paths.append(thm_path)

    return thm_paths
Ejemplo n.º 4
0
def from_dct(reacs, prods, spc_dct, rxn_mul='low', sort=False):
    """ prepare rxn info and reverse the reactants and products
        if reaction is endothermic
    """

    # Build the tuples of the reacs+prods infos
    rxn_ichs, rxn_chgs, rxn_muls = tuple(), tuple(), tuple()
    for side in (reacs, prods):
        ichs, chgs, muls = tuple(), tuple(), tuple()
        for rct in side:
            spc_info = spc.from_dct(spc_dct[rct])
            ichs += (spc.value(spc_info, par.SPC.INCHI), )
            chgs += (spc.value(spc_info, par.SPC.CHARGE), )
            muls += (spc.value(spc_info, par.SPC.MULT), )
        rxn_ichs += (ichs, )
        rxn_chgs += (chgs, )
        rxn_muls += (muls, )

    # Determine the multiplicity of the full reaction
    _, ts_mul_low, ts_mul_high = rxn_chg_mult(rxn_muls, rxn_chgs)
    ts_mul = ts_mul_low if rxn_mul == 'low' else ts_mul_high

    rxn_info = (rxn_ichs, rxn_chgs, rxn_muls, ts_mul)
    if sort:
        rxn_info = sort(rxn_info)

    return rxn_info
Ejemplo n.º 5
0
def set_etrans_well(rxn_lst, spc_dct):
    """ Build info object for reference well on PES
    """

    well_dct = None

    _, (reacs, prods) = rxn_lst[0]

    if len(reacs) == 1:
        well_dct = spc_dct[reacs[0]]
    elif len(prods) == 1:
        well_dct = spc_dct[prods[0]]
    else:
        rct1_dct = spc_dct[reacs[0]]
        rct2_dct = spc_dct[reacs[1]]
        rct1_count = automol.geom.count(
            automol.inchi.geometry(rct1_dct['inchi']))
        rct2_count = automol.geom.count(
            automol.inchi.geometry(rct2_dct['inchi']))
        if rct1_count > rct2_count:
            well_dct = rct1_dct
        else:
            well_dct = rct2_dct

    well_info = sinfo.from_dct(well_dct)

    return well_info
Ejemplo n.º 6
0
def from_dct(reacs, prods, spc_dct, rxn_mul='low'):
    """ Construct a full reaction info object using the names of the
        reactants and products, which are used to read a species dictionary for
        the required physical information.

        :param reacs: names of the reactants
        :type reacs: tuple(str)
        :param prods: names of the products
        :type prods: tuple(str)
        :param spc_dct:
        :type spc_dct: dict[]
        :param rxn_mul: multiplicity of reaction to store in object
        :type rxn_mul: str
    """

    # Build the tuples of the reacs+prods infos
    rxn_ichs, rxn_chgs, rxn_muls = tuple(), tuple(), tuple()
    for side in (reacs, prods):
        ichs, chgs, muls = tuple(), tuple(), tuple()
        for rct in side:
            spc_info = spc.from_dct(spc_dct[rct])
            ichs += (spc.value(spc_info, par.SPC.INCHI),)
            chgs += (spc.value(spc_info, par.SPC.CHARGE),)
            muls += (spc.value(spc_info, par.SPC.MULT),)
        rxn_ichs += (ichs,)
        rxn_chgs += (chgs,)
        rxn_muls += (muls,)

    # Determine the multiplicity of the full reaction
    fake_rxn_info = (rxn_ichs, rxn_chgs, rxn_muls, ())
    ts_mul = ts_mult(fake_rxn_info, rxn_mul=rxn_mul)

    rxn_info = (rxn_ichs, rxn_chgs, rxn_muls, ts_mul)

    return rxn_info
Ejemplo n.º 7
0
def instability_transformation(spc_dct,
                               spc_name,
                               thy_info,
                               save_prefix,
                               zma_locs=(0, )):
    """ see if a species and unstable and handle task management
    """

    spc_info = sinfo.from_dct(spc_dct[spc_name])
    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)

    _, cnf_save_fs = build_fs('',
                              save_prefix,
                              'CONFORMER',
                              spc_locs=spc_info,
                              thy_locs=mod_thy_info[1:])

    # Check if any locs exist first?
    ini_loc_info = min_energy_conformer_locators(cnf_save_fs, mod_thy_info)
    _, min_cnf_path = ini_loc_info

    zma_save_fs = autofile.fs.zmatrix(min_cnf_path)

    # Check if the instability files exist
    if zma_save_fs[-1].file.instability.exists(zma_locs):
        instab_trans = zma_save_fs[-1].file.instability.read(zma_locs)
        zma = zma_save_fs[-1].file.zmatrix.read(zma_locs)
        _instab = (instab_trans, zma)
        path = zma_save_fs[-1].file.zmatrix.path(zma_locs)
    else:
        _instab = None
        path = None

    return _instab, path
Ejemplo n.º 8
0
def conformer_list_from_models(spc_name, thy_dct, print_keyword_dct,
                               save_prefix, run_prefix, spc_dct_i,
                               spc_mod_dct_i):
    """ Create a list of conformers based on the species name
        and model.dat info
    """
    # conformer range
    cnf_range = _set_conf_range(print_keyword_dct)
    hbond_cutoffs = spc_dct_i['hbond_cutoffs']

    # thy_info build
    thy_info = spc_mod_dct_i['vib']['geolvl'][1][1]
    spc_info = sinfo.from_dct(spc_dct_i)
    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)
    sort_info_lst = _set_sort_info_lst(print_keyword_dct['sort'], thy_dct,
                                       spc_info)

    zrxn = spc_dct_i.get('zrxn', None)
    _root = filesys.root_locs(spc_dct_i,
                              name=spc_name,
                              saddle=(zrxn is not None))
    _, cnf_save_fs = filesys.build_fs(run_prefix,
                                      save_prefix,
                                      'CONFORMER',
                                      thy_locs=mod_thy_info[1:],
                                      **_root)
    rng_cnf_locs_lst, rng_cnf_locs_path = filesys.mincnf.conformer_locators(
        cnf_save_fs,
        mod_thy_info,
        cnf_range=cnf_range,
        sort_info_lst=sort_info_lst,
        hbond_cutoffs=hbond_cutoffs,
        print_enes=True)

    return cnf_save_fs, rng_cnf_locs_lst, rng_cnf_locs_path, mod_thy_info
Ejemplo n.º 9
0
def set_model_filesys(spc_dct_i, level,
                      run_prefix, save_prefix, saddle, name=None, rings='all'):
    """ Gets filesystem objects for reading many calculations
    """

    # Set the spc_info
    if saddle:
        rxn_info = spc_dct_i['rxn_info']
        spc_info = rinfo.ts_info(rxn_info)
    else:
        spc_info = sinfo.from_dct(spc_dct_i)

    print('level', level)
    levelp = tinfo.modify_orb_label(level, spc_info)

    _root = root_locs(spc_dct_i, saddle=saddle, name=name)
    cnf_run_fs, cnf_save_fs = build_fs(
        run_prefix, save_prefix, 'CONFORMER',
        thy_locs=levelp[1:],
        **_root)

    if rings == 'min':
        min_rngs_locs, min_rngs_path = mincnf.min_energy_conformer_locators(
            cnf_save_fs, levelp)
        cnf_run_fs[-1].create(min_rngs_locs)
    else:
        min_rngs_locs, min_rngs_path = mincnf.conformer_locators(
             cnf_save_fs, levelp, cnf_range='r100')
        for min_locs in min_rngs_locs:
            cnf_run_fs[-1].create(min_locs)

    print('model filesys', min_rngs_locs, min_rngs_path)
    # Create run fs if that directory has been deleted to run the jobs

    return [cnf_save_fs, min_rngs_path, min_rngs_locs, '', cnf_run_fs]
Ejemplo n.º 10
0
def build_rotors(spc_dct_i, pf_filesystems, spc_mod_dct_i,
                 read_potentials=True):
    """ Add more rotor info
    """

    run_prefix = pf_filesystems['run_prefix']
    spc_info = sinfo.from_dct(spc_dct_i)
    spc_fml = automol.inchi.formula_string(spc_info[0])
    if spc_fml is None:
        spc_fml = 'TS'
    run_path = job_path(run_prefix, 'PROJROT', 'FREQ', spc_fml, locs_idx=None)

    # Set up tors level filesystem and model and level
    tors_model = spc_mod_dct_i['tors']['mod']
    tors_ene_info = spc_mod_dct_i['tors']['enelvl'][1][1]
    mod_tors_ene_info = tinfo.modify_orb_label(
        tors_ene_info, sinfo.from_dct(spc_dct_i))

    rotors = None
    if pf_filesystems['tors'] is not None:
        [cnf_fs, cnf_save_path, min_cnf_locs, _, _] = pf_filesystems['tors']

        # Build the rotors
        ref_ene = filesys.read.energy(cnf_fs, min_cnf_locs, mod_tors_ene_info)
        zma_fs = fs.zmatrix(cnf_fs[-1].path(min_cnf_locs))
        if (
            zma_fs[-1].file.torsions.exists([0]) and
            zma_fs[-1].file.zmatrix.exists([0]) and
            tors_model != 'rigid'
        ):
            rotors = automol.rotor.from_data(
                zma=zma_fs[-1].file.zmatrix.read([0]),
                tors_inf_dct=zma_fs[-1].file.torsions.read([0]),
                tors_names=spc_dct_i.get('tors_names', None),
                multi=bool('1d' in tors_model))

        # Read the potential grids
        if read_potentials and rotors is not None:
            rotors = _read_potentials(
                rotors, spc_dct_i, run_path, cnf_save_path,
                ref_ene, mod_tors_ene_info,
                tors_model)

    return rotors
Ejemplo n.º 11
0
def set_model_filesys(spc_dct_i,
                      level,
                      run_prefix,
                      save_prefix,
                      saddle,
                      name=None,
                      cnf_range='min',
                      spc_locs=None,
                      nprocs=1):
    """ Gets filesystem objects for reading many calculations
    """

    # Set the spc_info
    if saddle:
        rxn_info = spc_dct_i['rxn_info']
        spc_info = rinfo.ts_info(rxn_info)
    else:
        spc_info = sinfo.from_dct(spc_dct_i)

    levelp = tinfo.modify_orb_label(level, spc_info)

    _root = root_locs(spc_dct_i, saddle=saddle, name=name)
    cnf_run_fs, cnf_save_fs = build_fs(run_prefix,
                                       save_prefix,
                                       'CONFORMER',
                                       thy_locs=levelp[1:],
                                       **_root)

    hbond_cutoffs = spc_dct_i['hbond_cutoffs']
    if cnf_range == 'specified':
        min_rngs_locs = spc_locs
        min_rngs_path = cnf_save_fs[-1].path(min_rngs_locs)
        cnf_run_fs[-1].create(min_rngs_locs)
    elif cnf_range == 'min':
        min_rngs_locs, min_rngs_path = min_energy_conformer_locators(
            cnf_save_fs, levelp, hbond_cutoffs=hbond_cutoffs)
        cnf_run_fs[-1].create(min_rngs_locs)
    else:
        min_rngs_locs_lst, min_rngs_path_lst = conformer_locators(
            cnf_save_fs,
            levelp,
            cnf_range=cnf_range,
            hbond_cutoffs=hbond_cutoffs,
            nprocs=nprocs)
        for min_locs in min_rngs_locs_lst:
            cnf_run_fs[-1].create(min_locs)
        min_rngs_locs = min_rngs_locs_lst[0]
        min_rngs_path = min_rngs_path_lst[0]
        ioprinter.warning_message('Only returning first location in this list')
    # Create run fs if that directory has been deleted to run the jobs

    return [cnf_save_fs, min_rngs_path, min_rngs_locs, '', cnf_run_fs]
Ejemplo n.º 12
0
def electronic_energy(spc_dct_i, pf_filesystems, spc_model_dct_i, conf=None):
    """ get high level energy at low level optimized geometry
    """

    ioprinter.info_message('- Calculating electronic energy')

    # spc_dct_i = spc_dct[spc_name]
    rxn_info = spc_dct_i.get('rxn_info', None)
    if rxn_info is not None:
        spc_info = rinfo.ts_info(rxn_info)
    else:
        spc_info = sinfo.from_dct(spc_dct_i)

    # Get the harmonic filesys information
    if conf:
        cnf_path = conf[1]
    else:
        [_, cnf_path, _, _, _] = pf_filesystems['harm']

    # Get the electronic energy levels
    ene_levels = tuple(val[1] for key, val in spc_model_dct_i['ene'].items()
                       if 'lvl' in key)
    print('ene levels', ene_levels)

    # Read the energies from the filesystem
    e_elec = None
    if os.path.exists(cnf_path):

        e_elec = 0.0
        # ioprinter.info_message('lvls', ene_levels)
        for (coeff, level) in ene_levels:
            # Build SP filesys
            mod_thy_info = tinfo.modify_orb_label(level, spc_info)
            sp_save_fs = autofile.fs.single_point(cnf_path)
            sp_save_fs[-1].create(mod_thy_info[1:4])
            # Read the energy
            sp_path = sp_save_fs[-1].path(mod_thy_info[1:4])
            if os.path.exists(sp_path):
                ioprinter.reading('Energy', sp_path)
                ene = sp_save_fs[-1].file.energy.read(mod_thy_info[1:4])
                e_elec += (coeff * ene)
            else:
                ioprinter.warning_message('No energy at path')
                e_elec = None
                break
    else:
        ioprinter.warning_message('No conformer to calculate the energy')

    return e_elec
Ejemplo n.º 13
0
def thermo_paths(spc_dct, spc_locs_dct, spc_mods, run_prefix):
    """ Set up the path for saving the pf input and output.
        Placed in a MESSPF, NASA dirs high in run filesys.
    """

    thm_path_dct = {}
    for spc_name in spc_locs_dct:
        spc_thm_path_dct = {}
        spc_info = sinfo.from_dct(spc_dct[spc_name])
        spc_formula = automol.inchi.formula_string(spc_info[0])
        thm_prefix = [spc_formula, automol.inchi.inchi_key(spc_info[0])]
        spc_locs_lst = spc_locs_dct[spc_name]
        for sidx, spc_locs in enumerate(spc_locs_lst, start=1):
            spc_mod_thm_path_dct = {}
            for midx, mod in enumerate(spc_mods):
                idx = sidx * 10 + midx
                spc_mod_thm_path_dct[mod] = (job_path(run_prefix,
                                                      'MESS',
                                                      'PF',
                                                      thm_prefix,
                                                      locs_idx=idx),
                                             job_path(run_prefix,
                                                      'THERM',
                                                      'NASA',
                                                      thm_prefix,
                                                      locs_idx=idx))
            spc_mod_thm_path_dct['mod_total'] = (job_path(run_prefix,
                                                          'MESS',
                                                          'PF',
                                                          thm_prefix,
                                                          locs_idx=sidx),
                                                 job_path(run_prefix,
                                                          'THERM',
                                                          'NASA',
                                                          thm_prefix,
                                                          locs_idx=sidx))
            spc_thm_path_dct[tuple(spc_locs)] = spc_mod_thm_path_dct
        spc_thm_path_dct['spc_total'] = (job_path(run_prefix,
                                                  'MESS',
                                                  'PF',
                                                  thm_prefix,
                                                  locs_idx=0),
                                         job_path(run_prefix,
                                                  'THERM',
                                                  'NASA',
                                                  thm_prefix,
                                                  locs_idx=0))
        thm_path_dct[spc_name] = spc_thm_path_dct
    return thm_path_dct
Ejemplo n.º 14
0
def geom_init(spc_dct, spc_name, thy_dct, es_keyword_dct, run_prefix,
              save_prefix):
    """ Execute the task for a species used to seed the
        filesystem with a reliable initial conformer.

        :param spc_dct:
        :type spc_dct:
        :param spc_name: name of species
        :type spc_name: str
        :param thy_dct:
        :type thy_dct:
        :param es_keyword_dct: keyword-val pairs for electronic structure task
        :type es_keyword_dct: dict[str:str]
        :param run_prefix: root-path to the run-filesystem
        :type run_prefix: str
        :param save_prefix: root-path to the save-filesystem
        :type save_prefix: str
    """

    spc_dct_i = spc_dct[spc_name]
    spc_info = sinfo.from_dct(spc_dct_i)

    # Get the theory info
    method_dct = thy_dct.get(es_keyword_dct['runlvl'])
    ini_method_dct = thy_dct.get(es_keyword_dct['inplvl'])
    thy_info = tinfo.from_dct(method_dct)
    ini_thy_info = tinfo.from_dct(ini_method_dct)
    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)
    mod_ini_thy_info = tinfo.modify_orb_label(ini_thy_info, spc_info)

    # Set the filesystem objects
    _, ini_cnf_save_fs = build_fs(run_prefix,
                                  save_prefix,
                                  'CONFORMER',
                                  spc_locs=spc_info,
                                  thy_locs=mod_ini_thy_info[1:])
    cnf_run_fs, cnf_save_fs = build_fs(run_prefix,
                                       save_prefix,
                                       'CONFORMER',
                                       spc_locs=spc_info,
                                       thy_locs=mod_thy_info[1:])

    # Get a reference geometry if one not found
    success = conformer.initial_conformer(spc_dct_i, spc_info, ini_method_dct,
                                          method_dct, ini_cnf_save_fs,
                                          cnf_run_fs, cnf_save_fs,
                                          es_keyword_dct)

    return success
Ejemplo n.º 15
0
def root_locs(spc_dct_i, saddle=False, name=None):
    """ Set the root locatores for the species and TS
    """

    if not saddle:
        spc_info = sinfo.from_dct(spc_dct_i)
        rxn_info = None
        ts_info = None
    else:
        spc_info = None
        rxn_info = rinfo.sort(spc_dct_i['rxn_info'])
        ts_num = int(name.split('_')[-1])
        ts_info = (ts_num, )

    return {'spc_locs': spc_info, 'rxn_locs': rxn_info, 'ts_locs': ts_info}
Ejemplo n.º 16
0
def set_bath(spc_dct, etrans_dct):
    """ Build nfo object for the bath
    """

    # Try to obtain bath set by the user, otherwise use N2
    bath_name = etrans_dct.get('bath', None)
    bath_dct = spc_dct.get(bath_name, None)
    if bath_dct is not None:
        bath_info = sinfo.from_dct(bath_dct)
        ioprinter.info_message(f'  - Using bath {bath_name} input by user')
    else:
        bath_info = ['InChI=1S/Ar', 0, 1]
        ioprinter.info_message('  - No bath provided, using Argon as bath')

    return bath_info
Ejemplo n.º 17
0
def geom_init(spc_dct, spc_name, thy_dct, es_keyword_dct, run_prefix,
              save_prefix):
    """ Find the initial geometry
    """

    spc_dct_i = spc_dct[spc_name]
    spc_info = sinfo.from_dct(spc_dct_i)

    # Get the theory info
    method_dct = thy_dct.get(es_keyword_dct['runlvl'])
    ini_method_dct = thy_dct.get(es_keyword_dct['inplvl'])
    thy_info = tinfo.from_dct(method_dct)
    ini_thy_info = tinfo.from_dct(ini_method_dct)
    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)
    mod_ini_thy_info = tinfo.modify_orb_label(ini_thy_info, spc_info)

    # Set the filesystem objects
    _, ini_cnf_save_fs = build_fs(run_prefix,
                                  save_prefix,
                                  'CONFORMER',
                                  spc_locs=spc_info,
                                  thy_locs=mod_ini_thy_info[1:])
    cnf_run_fs, cnf_save_fs = build_fs(run_prefix,
                                       save_prefix,
                                       'CONFORMER',
                                       spc_locs=spc_info,
                                       thy_locs=mod_thy_info[1:])

    # _, ini_cnf_save_fs = build_fs(
    #     run_prefix, save_prefix, 'CONFORMER',
    #     spc_locs=spc_info, thy_locs=mod_ini_thy_info[1:])
    # cnf_run_fs, cnf_save_fs = build_fs(
    #     run_prefix, save_prefix, 'CONFORMER',
    #     spc_locs=spc_info, thy_locs=mod_thy_info[1:])

    _, instab_save_fs = build_fs(run_prefix,
                                 save_prefix,
                                 'INSTAB',
                                 spc_locs=spc_info,
                                 thy_locs=mod_thy_info[1:])

    # Get a reference geometry if one not found
    success = conformer.initial_conformer(spc_dct_i, spc_info, ini_method_dct,
                                          method_dct, ini_cnf_save_fs,
                                          cnf_run_fs, cnf_save_fs,
                                          instab_save_fs, es_keyword_dct)

    return success
Ejemplo n.º 18
0
def conformer_list_from_models(print_keyword_dct, save_prefix, run_prefix,
                               spc_dct_i, spc_mod_dct_i):
    """ Create a list of conformers based on the species name
        and model.dat info
    """
    # conformer range
    cnf_range = _set_conf_range(print_keyword_dct)

    # thy_info build
    thy_info = spc_mod_dct_i['geo'][1]
    spc_info = sinfo.from_dct(spc_dct_i)
    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)

    _root = filesys.root_locs(spc_dct_i, saddle=False)
    _, cnf_save_fs = filesys.build_fs(run_prefix,
                                      save_prefix,
                                      'CONFORMER',
                                      thy_locs=mod_thy_info[1:],
                                      **_root)
    rng_cnf_locs_lst, rng_cnf_locs_path = filesys.mincnf.conformer_locators(
        cnf_save_fs, mod_thy_info, cnf_range=cnf_range)
    return cnf_save_fs, rng_cnf_locs_lst, rng_cnf_locs_path
Ejemplo n.º 19
0
def root_locs(spc_dct_i, saddle=False, name=None):
    """ Set the root locatores for the species and TS
    """

    if not saddle:
        spc_info = sinfo.from_dct(spc_dct_i)
        rxn_info = None
        ts_info = None
    else:
        spc_info = None
        rxn_info = rinfo.sort(spc_dct_i['rxn_info'])
        ts_num = int(name.split('_')[-1])
        ts_info = (ts_num, )
        # if 'ts_locs' in spc_dct_i:
        #     ts_info = spc_dct_i['ts_locs']
        # else:
        #     ts_num = int(name.split('_')[-1])
        #     ts_info = (ts_num,)
        # print('TEST ts locs:', ts_info)
        # ts_info = (0,)  # may be more complicated
        # ts_info = ()

    return {'spc_locs': spc_info, 'rxn_locs': rxn_info, 'ts_locs': ts_info}
Ejemplo n.º 20
0
def energy(spc_name, spc_dct_i, spc_mod_dct_i, proc_keyword_dct, thy_dct, locs,
           locs_path, cnf_fs, run_prefix, save_prefix):
    """ collect energy
    """

    saddle = 'ts_' in spc_name

    _ene = None
    if spc_mod_dct_i:
        pf_filesystems = filesys.models.pf_filesys(spc_dct_i,
                                                   spc_mod_dct_i,
                                                   run_prefix,
                                                   save_prefix,
                                                   name=spc_name,
                                                   saddle=saddle)
        _ene = ene.electronic_energy(spc_dct_i,
                                     pf_filesystems,
                                     spc_mod_dct_i,
                                     conf=(locs, locs_path, cnf_fs))
    else:
        spc_info = sinfo.from_dct(spc_dct_i)
        thy_info = tinfo.from_dct(thy_dct.get(proc_keyword_dct['proplvl']))
        mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)
        sp_save_fs = autofile.fs.single_point(locs_path)
        # Read the energy
        sp_path = sp_save_fs[-1].path(mod_thy_info[1:4])
        if os.path.exists(sp_path):
            if sp_save_fs[-1].file.energy.exists(mod_thy_info[1:4]):
                ioprinter.reading('Energy', sp_path)
                _ene = sp_save_fs[-1].file.energy.read(mod_thy_info[1:4])

    if _ene is not None:
        miss_data = None
    else:
        miss_data = (spc_name + '_'.join(locs), mod_thy_info, 'energy')

    return [locs_path, _ene], miss_data
Ejemplo n.º 21
0
def _get_prop_fs(spc_model_dct_i,
                 spc_dct_i,
                 prop,
                 sort_info_lst,
                 run_prefix,
                 save_prefix,
                 saddle=False,
                 name=None):
    """ Get filesystem info for a property in the spc model dct
    """
    if saddle:
        rxn_info = spc_dct_i['rxn_info']
        spc_info = rinfo.ts_info(rxn_info)
    else:
        spc_info = sinfo.from_dct(spc_dct_i)

    level = spc_model_dct_i[prop]['geolvl'][1][1]
    levelp = tinfo.modify_orb_label(level, spc_info)
    mod_info_lst = []
    if sort_info_lst is not None:
        for info in sort_info_lst[:2]:
            if info is not None:
                mod_info_lst.append(tinfo.modify_orb_label(info, spc_info))
            else:
                mod_info_lst.append(info)
        for info in sort_info_lst[2:]:
            mod_info_lst.append(info)

    _root = root_locs(spc_dct_i, saddle=saddle, name=name)
    cnf_run_fs, cnf_save_fs = build_fs(run_prefix,
                                       save_prefix,
                                       'CONFORMER',
                                       thy_locs=levelp[1:],
                                       **_root)

    return cnf_run_fs, cnf_save_fs, levelp, mod_info_lst
Ejemplo n.º 22
0
def instability_transformation(spc_dct, spc_name, thy_info, save_prefix,
                               zma_locs=(0,)):
    """ see if a species and unstable and handle task management
    """

    spc_info = sinfo.from_dct(spc_dct[spc_name])
    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)
    _, zma_save_fs = build_fs(
        '', save_prefix, 'ZMATRIX',
        spc_locs=spc_info,
        thy_locs=mod_thy_info[1:],
        instab_locs=())

    # Check if the instability files exist
    if zma_save_fs[-1].file.reaction.exists(zma_locs):
        zrxn = zma_save_fs[-1].file.reaction.read(zma_locs)
        zma = zma_save_fs[-1].file.zmatrix.read(zma_locs)
        _instab = (zrxn, zma)
        path = zma_save_fs[-1].file.zmatrix.path(zma_locs)
    else:
        _instab = None
        path = None

    return _instab, path
Ejemplo n.º 23
0
def mol_data(spc_name,
             spc_dct,
             pes_mod_dct_i,
             spc_mod_dct_i,
             chn_basis_ene_dct,
             run_prefix,
             save_prefix,
             calc_chn_ene=True,
             zrxn=None,
             spc_locs=None):
    """ Reads all required data from the SAVE filesystem for a molecule.
        Stores data into an info dictionary.

        All of the data that is read is determined by the models that
        are described in the pes and spc model dictionaries.

        :param spc_dct:
        :type spc_dct:
        :param pes_mod_dct_i: keyword dict of specific PES model
        :type pes_mod_dct_i: dict[]
        :param spc_mod_dct_i: keyword dict of specific species model
        :type spc_mod_dct_i: dict[]
        :param run_prefix: root-path to the run-filesystem
        :type run_prefix: str
        :param save_prefix: root-path to the save-filesystem
        :type save_prefix: str
        :rtype: dict[]
    """

    spc_dct_i = spc_dct[spc_name]
    ene_chnlvl = None
    ene_reflvl = None
    zpe = None
    hf0k = None
    hf0k_trs = None
    hf0k = None

    # Initialize all of the elements of the inf dct
    geom, sym_factor, freqs, imag, elec_levels = None, None, None, None, None
    allr_str, mdhr_dat = '', ''
    xmat, rovib_coups, rot_dists = None, None, None

    # Set up all the filesystem objects using models and levels
    pf_filesystems = filesys.models.pf_filesys(spc_dct_i,
                                               spc_mod_dct_i,
                                               run_prefix,
                                               save_prefix,
                                               zrxn is not None,
                                               name=spc_name,
                                               spc_locs=spc_locs)

    # Obtain rotation partition function information
    ioprinter.info_message('Obtaining info for rotation partition function...',
                           newline=1)
    geom = rot.read_geom(pf_filesystems)

    if typ.nonrigid_rotations(spc_mod_dct_i):
        rovib_coups, rot_dists = rot.read_rotational_values(pf_filesystems)

    # Obtain vibration partition function information
    ioprinter.info_message(
        'Preparing internal rotor info building partition functions...',
        newline=1)
    rotors = tors.build_rotors(spc_dct_i, pf_filesystems, spc_mod_dct_i)
    ioprinter.info_message(
        'Obtaining the vibrational frequencies and zpves...', newline=1)
    freqs, imag, zpe, _, tors_strs, _, _, _ = vib.full_vib_analysis(
        spc_dct_i, pf_filesystems, spc_mod_dct_i, run_prefix, zrxn=zrxn)
    allr_str = tors_strs[0]

    # ioprinter.info_message('zpe in mol_data test:', zpe)
    if typ.anharm_vib(spc_mod_dct_i):
        xmat = vib.read_anharmon_matrix(pf_filesystems)

    # Obtain symmetry factor
    ioprinter.info_message('Determining the symmetry factor...', newline=1)

    zma = None
    if zrxn:
        [_, cnf_save_path, _, _, _] = pf_filesystems['harm']
        # Build the rotors
        if cnf_save_path:
            zma_fs = autofile.fs.zmatrix(cnf_save_path)
            zma = zma_fs[-1].file.zmatrix.read([0])

    sym_factor = symm.symmetry_factor(pf_filesystems,
                                      spc_mod_dct_i,
                                      spc_dct_i,
                                      rotors,
                                      grxn=zrxn,
                                      zma=zma)

    # Obtain electronic energy levels
    elec_levels = spc_dct_i['elec_levels']

    # Obtain energy levels
    ioprinter.info_message('Obtaining the electronic energy + zpve...',
                           newline=1)
    if calc_chn_ene:
        chn_ene = ene.read_energy(spc_dct_i,
                                  pf_filesystems,
                                  spc_mod_dct_i,
                                  run_prefix,
                                  read_ene=True,
                                  read_zpe=False,
                                  saddle=zrxn is not None)
        ene_chnlvl = chn_ene + zpe

        zma = None
        # Determine info about the basis species used in thermochem calcs
        hf0k, hf0k_trs, chn_basis_ene_dct, _ = basis.enthalpy_calculation(
            spc_dct,
            spc_name,
            ene_chnlvl,
            chn_basis_ene_dct,
            pes_mod_dct_i,
            spc_mod_dct_i,
            run_prefix,
            save_prefix,
            zrxn=zrxn)

    ene_reflvl = None

    #  Build the energy transfer section strings
    if zrxn is None:
        ioprinter.info_message('Determining energy transfer parameters...',
                               newline=1)
        well_info = sinfo.from_dct(spc_dct_i)
        # ioprinter.debug_message('well_inf', well_info)
        # bath_info = ['InChI=1S/N2/c1-2', 0, 1]  # how to do...
        bath_info = ['InChI=1S/Ar', 0, 1]  # how to do...
        etrans_dct = etrans.build_etrans_dct(spc_dct_i)

        edown_str, collid_freq_str = etrans.make_energy_transfer_strs(
            well_info, bath_info, etrans_dct)
    else:
        edown_str, collid_freq_str = None, None

    # Create info dictionary
    keys = [
        'geom', 'sym_factor', 'freqs', 'imag', 'elec_levels', 'mess_hr_str',
        'mdhr_dat', 'xmat', 'rovib_coups', 'rot_dists', 'ene_chnlvl',
        'ene_reflvl', 'zpe_chnlvl', 'ene_tsref', 'edown_str', 'collid_freq_str'
    ]
    vals = [
        geom, sym_factor, freqs, imag, elec_levels, allr_str, mdhr_dat, xmat,
        rovib_coups, rot_dists, hf0k, ene_reflvl, zpe, hf0k_trs, edown_str,
        collid_freq_str
    ]
    inf_dct = dict(zip(keys, vals))

    return inf_dct, chn_basis_ene_dct
Ejemplo n.º 24
0
def tau_tsk(job, spc_dct, spc_name, thy_dct, es_keyword_dct, run_prefix,
            save_prefix):
    """ Energies, gradients, and hessians,
        for set of arbitrarily sampled torsional coordinates
        with all other coordinates optimized
    """
    spc_dct_i = spc_dct[spc_name]

    # Set the spc_info
    spc_info = sinfo.from_dct(spc_dct_i)

    # Get es options
    overwrite = es_keyword_dct['overwrite']
    retryfail = es_keyword_dct['retryfail']
    # scan_increment = spc_dct_i['hind_inc']
    nsamp_par = spc_dct_i['tau_nsamp']

    # Modify the theory
    method_dct = thy_dct.get(es_keyword_dct['runlvl'])
    ini_method_dct = thy_dct.get(es_keyword_dct['inplvl'])
    thy_info = tinfo.from_dct(method_dct)
    ini_thy_info = tinfo.from_dct(ini_method_dct)
    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)
    mod_ini_thy_info = tinfo.modify_orb_label(ini_thy_info, spc_info)

    # Script
    script_str, kwargs = qchem_params(method_dct, elstruct.Job.OPTIMIZATION)

    # Set the filesystem objects for thy info
    _, ini_cnf_save_fs = build_fs(run_prefix,
                                  save_prefix,
                                  'CONFORMER',
                                  spc_locs=spc_info,
                                  thy_locs=mod_ini_thy_info[1:])
    ini_loc_info = filesys.mincnf.min_energy_conformer_locators(
        ini_cnf_save_fs, mod_ini_thy_info)
    ini_min_cnf_locs, ini_min_cnf_path = ini_loc_info
    ini_min_rid, ini_min_cid = ini_min_cnf_locs

    ini_zma_save_fs = autofile.fs.zmatrix(ini_min_cnf_path)
    geo = ini_cnf_save_fs[-1].file.geometry.read(ini_min_cnf_locs)
    zma = ini_zma_save_fs[-1].file.zmatrix.read((0, ))
    ini_sp_save_fs = autofile.fs.single_point(ini_min_cnf_path)
    if ini_sp_save_fs[-1].file.energy.exists(mod_ini_thy_info[1:4]):
        ref_ene = ini_sp_save_fs[-1].file.energy.read(mod_ini_thy_info[1:4])
    else:
        ref_ene = ini_cnf_save_fs[-1].file.energy.read(ini_min_cnf_locs)

    # Get the tors names
    ini_zma_save_fs = autofile.fs.zmatrix(ini_min_cnf_path)
    if ini_zma_save_fs[-1].file.torsions.exists([0]):
        tors_dct = ini_zma_save_fs[-1].file.torsions.read([0])
        torsions = automol.rotor.from_data(zma, tors_dct)
    else:
        torsions = ()

    saddle = bool('ts_' in spc_name)

    # Run the task if any torsions exist
    if torsions and not saddle:

        # Set up tau filesystem objects
        tau_run_fs, tau_save_fs = build_fs(run_prefix,
                                           save_prefix,
                                           'TAU',
                                           spc_locs=spc_info,
                                           thy_locs=mod_thy_info[1:])
        # db_style = 'jsondb'
        db_style = 'directory'
        if db_style == 'jsondb':
            tau_save_fs[-1].root.create()
            tau_save_fs[-1].json_create()
            for locs in tau_save_fs[-1].existing():
                if tau_save_fs[-1].file.geometry.exists(locs):
                    geol = tau_save_fs[-1].file.geometry.read(locs)
                    tau_save_fs[-1].json.geometry.write(geol, locs)
                if tau_save_fs[-1].file.energy.exists(locs):
                    enel = tau_save_fs[-1].file.energy.read(locs)
                    tau_save_fs[-1].json.energy.write(enel, locs)
                if tau_save_fs[-1].file.geometry_info.exists(locs):
                    geo_infl = tau_save_fs[-1].file.geometry_info.read(locs)
                    tau_save_fs[-1].json.geometry_info.write(geo_infl, locs)
                if tau_save_fs[-1].file.geometry_input.exists(locs):
                    inp_strl = tau_save_fs[-1].file.geometry_input.read(locs)
                    tau_save_fs[-1].json.geometry_input.write(inp_strl, locs)
                if tau_save_fs[-1].file.gradient_input.exists(locs):
                    inp_strl = tau_save_fs[-1].file.gradient_input.read(locs)
                    tau_save_fs[-1].json.gradient_input.write(inp_strl, locs)
                if tau_save_fs[-1].file.hessian_input.exists(locs):
                    inp_strl = tau_save_fs[-1].file.hessian_input.read(locs)
                    tau_save_fs[-1].json.hessian_input.write(inp_strl, locs)
                if tau_save_fs[-1].file.gradient_info.exists(locs):
                    inf_objl = tau_save_fs[-1].file.gradient_info.read(locs)
                    tau_save_fs[-1].json.gradient_info.write(inf_objl, locs)
                if tau_save_fs[-1].file.hessian_info.exists(locs):
                    inf_objl = tau_save_fs[-1].file.hessian_info.read(locs)
                    tau_save_fs[-1].json.hessian_info.write(inf_objl, locs)
                if tau_save_fs[-1].file.gradient.exists(locs):
                    gradl = tau_save_fs[-1].file.gradient.read(locs)
                    tau_save_fs[-1].json.gradient.write(gradl, locs)
                if tau_save_fs[-1].file.hessian.exists(locs):
                    hessl = tau_save_fs[-1].file.hessian.read(locs)
                    tau_save_fs[-1].json.energy.hessian(hessl, locs)
                if tau_save_fs[-1].file.zmatrix.exists(locs):
                    zmatl = tau_save_fs[-1].file.zmatrix.read(locs)
                    tau_save_fs[-1].json.zmatrix.write(zmatl, locs)
                if tau_save_fs[-1].file.harmonic_frequencies.exists(locs):
                    hfreql = tau_save_fs[-1].file.harmonic_frequencies.read(
                        locs)
                    tau_save_fs[-1].json.harmonic_frequencies.write(
                        hfreql, locs)
                save_path = tau_save_fs[-1].path(locs)
                sp_save_fs = autofile.fs.single_point(save_path)
                sp_save_locs = sp_save_fs[-1].existing()
                save_path = tau_save_fs[-1].root.path()
                jsp_save_fs = autofile.fs.single_point(save_path,
                                                       json_layer=locs)
                for sp_locs in sp_save_locs:
                    if sp_save_fs[-1].file.energy.exists(sp_locs):
                        enel = sp_save_fs[-1].file.energy.read(sp_locs)
                        jsp_save_fs[-1].json.energy.write(enel, sp_locs)
                    if sp_save_fs[-1].file.input.exists(sp_locs):
                        inp_strl = sp_save_fs[-1].file.input.read(sp_locs)
                        jsp_save_fs[-1].json.input.write(inp_strl, sp_locs)
                    if sp_save_fs[-1].file.info.exists(sp_locs):
                        inf_objl = sp_save_fs[-1].file.info.read(sp_locs)
                        jsp_save_fs[-1].json.info.write(inf_objl, sp_locs)

        if job == 'samp':

            # Set up the script
            script_str, kwargs = qchem_params(method_dct,
                                              elstruct.Job.OPTIMIZATION)

            tors_names = automol.rotor.names(torsions, flat=True)
            # Run sampling
            tau.tau_sampling(zma,
                             ref_ene,
                             spc_info,
                             tors_names,
                             nsamp_par,
                             mod_ini_thy_info,
                             tau_run_fs,
                             tau_save_fs,
                             script_str,
                             overwrite,
                             saddle=saddle,
                             **kwargs)

        elif job in ('energy', 'grad'):

            # Set up the run scripts
            script_str, kwargs = qchem_params(method_dct)

            # Run the job over all the conformers requested by the user
            for locs in tau_save_fs[-1].existing():
                geo_run_path = tau_run_fs[-1].path(locs)
                if db_style == 'jsondb':
                    geo_save_path = tau_save_fs[-1].root.path()
                    geo = tau_save_fs[-1].json.geometry.read(locs)
                elif db_style == 'directory':
                    geo_save_path = tau_save_fs[-1].path(locs)
                    geo = tau_save_fs[-1].file.geometry.read(locs)
                tau_run_fs[-1].create(locs)
                zma = None
                ES_TSKS[job](zma,
                             geo,
                             spc_info,
                             mod_thy_info,
                             tau_save_fs,
                             geo_run_path,
                             geo_save_path,
                             locs,
                             script_str,
                             overwrite,
                             retryfail=retryfail,
                             **kwargs)
                ioprinter.obj('vspace')

        elif job == 'hess':

            # Add the hessian max
            hessmax = es_keyword_dct['hessmax']

            # Set up the run scripts
            script_str, kwargs = qchem_params(method_dct)

            # Run the job over all the conformers requested by the user
            hess_cnt = 0
            for locs in tau_save_fs.existing():
                ioprinter.info_message('HESS Number {}'.format(hess_cnt + 1),
                                       newline=1)
                geo_run_path = tau_run_fs[-1].path(locs)
                if db_style == 'directory':
                    geo_save_path = tau_save_fs[-1].path(locs)
                    if tau_save_fs[-1].file.hessian.exists(locs):
                        ioprinter.existing_path('Hessian', geo_save_path)
                        hess_cnt += 1
                        continue
                    geo = tau_save_fs[-1].file.geometry.read(locs)
                elif db_style == 'jsondb':
                    geo_save_path = tau_save_fs[-1].root.path()
                    if tau_save_fs[-1].json.hessian.exists(locs):
                        ioprinter.existing_path('Hessian', geo_save_path)
                        hess_cnt += 1
                        continue
                    geo = tau_save_fs[-1].json.geometry.read(locs)
                zma = None
                tau_run_fs[-1].create(locs)
                ES_TSKS[job](zma,
                             geo,
                             spc_info,
                             mod_thy_info,
                             tau_save_fs,
                             geo_run_path,
                             geo_save_path,
                             locs,
                             script_str,
                             overwrite,
                             retryfail=retryfail,
                             **kwargs)
                hess_cnt += 1
                if hess_cnt == hessmax:
                    break

    else:
        ioprinter.info_message('No torsional modes in the species')
Ejemplo n.º 25
0
def hr_tsk(job, spc_dct, spc_name, thy_dct, es_keyword_dct, run_prefix,
           save_prefix):
    """ run a scan over the specified torsional coordinates
    """

    spc_dct_i = spc_dct[spc_name]
    saddle = bool('ts_' in spc_name)
    # Set the spc_info
    if not saddle:
        spc_info = sinfo.from_dct(spc_dct_i)
    else:
        spc_info = rinfo.ts_info(spc_dct_i['rxn_info'])

    # Modify the theory
    method_dct = thy_dct.get(es_keyword_dct['runlvl'])
    ini_method_dct = thy_dct.get(es_keyword_dct['inplvl'])
    thy_info = tinfo.from_dct(method_dct)
    ini_thy_info = tinfo.from_dct(ini_method_dct)
    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)
    mod_ini_thy_info = tinfo.modify_orb_label(ini_thy_info, spc_info)

    # Set the filesystem objects
    _root = root_locs(spc_dct_i, saddle=saddle, name=spc_name)
    ini_cnf_run_fs, ini_cnf_save_fs = build_fs(run_prefix,
                                               save_prefix,
                                               'CONFORMER',
                                               thy_locs=mod_ini_thy_info[1:],
                                               **_root)
    cnf_run_fs, cnf_save_fs = build_fs(run_prefix,
                                       save_prefix,
                                       'CONFORMER',
                                       thy_locs=mod_thy_info[1:],
                                       **_root)
    instab_save_fs = ()

    ini_loc_info = filesys.mincnf.min_energy_conformer_locators(
        ini_cnf_save_fs, mod_ini_thy_info)
    ini_min_locs, ini_cnf_save_path = ini_loc_info
    # ini_min_rng_locs, ini_min_cnf_locs = ini_min_cnf_locs
    # ini_min_rng_path, ini_min_cnf_path = ini_min_cnf_path

    # Create run fs if that directory has been deleted to run the jobs
    ini_cnf_run_fs[-1].create(ini_min_locs)
    ini_cnf_run_path = ini_cnf_run_fs[-1].path(ini_min_locs)

    # Get options from the dct or es options lst
    overwrite = es_keyword_dct['overwrite']
    retryfail = es_keyword_dct['retryfail']
    tors_model = es_keyword_dct['tors_model']

    # Read zma, geo, and torsions
    ini_zma_save_fs = autofile.fs.zmatrix(ini_cnf_save_path)
    geo = ini_cnf_save_fs[-1].file.geometry.read(ini_min_locs)
    zma = ini_zma_save_fs[-1].file.zmatrix.read((0, ))
    if ini_zma_save_fs[-1].file.torsions.exists([0]):
        tors_dct = ini_zma_save_fs[-1].file.torsions.read([0])
        torsions = automol.rotor.from_data(
            zma,
            tors_dct,
        )
    else:
        torsions = ()

    # Run the task if any torsions exist
    if any(torsions):

        scn = 'SCAN' if 'fa' not in tors_model else 'CSCAN'
        ini_scn_run_fs, ini_scn_save_fs = build_fs(ini_cnf_run_path,
                                                   ini_cnf_save_path,
                                                   scn,
                                                   zma_locs=(0, ))

        if job == 'scan':

            increment = spc_dct_i.get('hind_inc', 30.0 * phycon.DEG2RAD)
            hr.hindered_rotor_scans(zma,
                                    spc_info,
                                    mod_thy_info,
                                    instab_save_fs,
                                    ini_scn_run_fs,
                                    ini_scn_save_fs,
                                    torsions,
                                    tors_model,
                                    method_dct,
                                    overwrite,
                                    saddle=saddle,
                                    increment=increment,
                                    retryfail=retryfail)

        # elif job == 'reopt':

        #     # pull stuff from dcts
        #     two_stage = saddle
        #     rxn_class = spc_dct_i['class'] if saddle else ''
        #     mc_nsamp = spc_dct_i['mc_nsamp']
        #     ethresh = es_keyword_dct['hrthresh']

        #     # Read and print the potential
        #     sp_fs = autofile.fs.single_point(ini_cnf_save_path)
        #     ref_ene = sp_fs[-1].file.energy.read(mod_ini_thy_info[1:4])
        #     # ref_ene = ini_cnf_save_fs[-1].file.energy.read(ini_min_cnf_locs)
        #     tors_pots, tors_zmas, tors_paths = {}, {}, {}
        #     for tors_names, tors_grids in zip(run_tors_names, run_tors_grids):
        #         constraint_dct = automol.zmat.build_constraint_dct(
        #             zma, const_names, tors_names)
        #         pot, _, _, _, zmas, paths = filesys.read.potential(
        #             tors_names, tors_grids,
        #             ini_cnf_save_path,
        #             mod_ini_thy_info, ref_ene,
        #             constraint_dct,
        #             read_zma=True)
        #         tors_pots[tors_names] = pot
        #         tors_zmas[tors_names] = zmas
        #         tors_paths[tors_names] = paths

        #     # Check for new minimum conformer
        #     new_min_zma = __.check_hr_pot(
        #         tors_pots, tors_zmas, tors_paths, emax=ethresh)

        #     if new_min_zma is not None:
        #         ioprinter.info_message(
        #             'Finding new low energy conformer...', newline=1)
        #         conformer.single_conformer(
        #             zma, spc_info, mod_thy_info,
        #             ini_cnf_run_fs, ini_cnf_save_fs,
        #             script_str, overwrite,
        #             retryfail=retryfail, rxn=rxn, **kwargs)

        elif job in ('energy', 'grad', 'hess', 'vpt2'):

            # Script (add energy script call)
            script_str, kwargs = qchem_params(method_dct)

            run_tors_names = automol.rotor.names(torsions, flat=True)
            for tors_names in run_tors_names:

                # Set the constraint dct and filesys for the scan
                const_names = automol.zmat.set_constraint_names(
                    zma, run_tors_names, tors_model)
                constraint_dct = automol.zmat.build_constraint_dct(
                    zma, const_names, tors_names)

                # get the scn_locs, maybe get a function?
                scn_locs = ()
                for locs in scn_locs:
                    geo_run_path = ini_scn_run_fs[-1].path(locs)
                    geo_save_path = ini_scn_save_fs[-1].path(locs)
                    geo = ini_scn_save_fs[-1].file.geometry.read(locs)
                    zma = ini_scn_save_fs[-1].file.zmatrix.read(locs)
                    ini_scn_run_fs[-1].create(locs)
                    ES_TSKS[job](zma,
                                 geo,
                                 spc_info,
                                 mod_thy_info,
                                 ini_scn_save_fs,
                                 geo_run_path,
                                 geo_save_path,
                                 locs,
                                 script_str,
                                 overwrite,
                                 retryfail=retryfail,
                                 **kwargs)
                    ioprinter.obj('vspace')
    else:
        ioprinter.info_message('No torsional modes in the species')
Ejemplo n.º 26
0
def rpath_tsk(job, spc_dct, spc_name, thy_dct, es_keyword_dct, run_prefix,
              save_prefix):
    """ run a scan over the specified torsional coordinates
    """

    # Get dct for specific species task is run for
    spc_dct_i = spc_dct[spc_name]

    # Set up coordinate name
    rxn_coord = es_keyword_dct.get('rxn_coord')
    if rxn_coord == 'auto':
        coord_name = ['Rn']  # grab from zrxn object
    else:
        # coord_name =
        coord_name = ['IRC']

    # Set the spc_info
    spc_info = sinfo.from_dct(spc_dct_i)

    # Modify the theory
    method_dct = thy_dct.get(es_keyword_dct['runlvl'])
    ini_method_dct = thy_dct.get(es_keyword_dct['inplvl'])
    thy_info = tinfo.from_dct(method_dct)
    ini_thy_info = tinfo.from_dct(ini_method_dct)
    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)
    mod_ini_thy_info = tinfo.modify_orb_label(ini_thy_info, spc_info)

    # Get options from the dct or es options lst
    overwrite = es_keyword_dct['overwrite']
    # retryfail = es_keyword_dct['retryfail']

    # Set up the script
    script_str, kwargs = qchem_params(method_dct, elstruct.Job.OPTIMIZATION)

    # Set the filesystem objects
    rxn_info = spc_dct_i['rxn_info']
    fs_rxn_info = rinfo.sort(rxn_info)

    # New filesystem objects
    if coord_name == 'irc':
        _root = root_locs(spc_dct_i, saddle=True)
        # ini_cnf_run_fs, ini_cnf_save_fs = build_fs(
        #     run_prefix, save_prefix, 'CONFORMER',
        #     thy_locs=mod_ini_thy_info[1:],
        #     **_root)
        # cnf_run_fs, cnf_save_fs = build_fs(
        #     run_prefix, save_prefix, 'CONFORMER',
        #     thy_locs=mod_thy_info[1:],
        #     **_root)
        ini_cnf_run_fs, ini_cnf_save_fs = build_fs(
            run_prefix,
            save_prefix,
            'CONFORMER',
            thy_locs=mod_ini_thy_info[1:],
            **_root)
        cnf_run_fs, cnf_save_fs = build_fs(run_prefix,
                                           save_prefix,
                                           'CONFORMER',
                                           thy_locs=mod_thy_info[1:],
                                           **_root)
        ini_loc_info = filesys.mincnf.min_energy_conformer_locators(
            ini_cnf_save_fs, mod_ini_thy_info)
        ini_min_locs, ini_pfx_save_path = ini_loc_info
        # ini_min_rng_locs, ini_min_cnf_locs = ini_min_cnf_locs
        # ini_min_rng_path, ini_min_cnf_path = ini_min_cnf_path
        ini_cnf_run_fs[-1].create(ini_min_locs)
        ini_pfx_run_path = ini_cnf_run_fs[-1].path(ini_min_locs)

    else:
        ts_info = (ts_num, )
        ini_ts_run_fs, ini_ts_save_fs = build_fs(run_prefix,
                                                 save_prefix,
                                                 'TS',
                                                 thy_locs=mod_ini_thy_info[1:],
                                                 **_root)
        ini_pfx_run_path = ini_ts_run_fs.path(ts_info)
        ini_pfx_save_path = ini_ts_save_fs.path(ts_info)

    # Get options from the dct or es options lst
    overwrite = es_keyword_dct['overwrite']

    ini_scn_run_fs, ini_scn_save_fs = build_fs(ini_pfx_run_path,
                                               ini_pfx_save_path,
                                               'SCAN',
                                               zma_locs=(0, ))

    ini_zma_save_fs = autofile.fs.zmatrix(ini_cnf_save_path)
    geo = ini_cnf_save_fs[-1].file.geometry.read(ini_min_locs)
    zma = ini_zma_save_fs[-1].file.zmatrix.read((0, ))

    # Run job
    if job == 'scan':

        if rcoord == 'auto':
            pass
        elif rcoord == 'irc':
            rpath.irc_scan(geo, spc_info, coord_name, mod_ini_thy_info,
                           ini_method_dct, ini_scn_save_fs, ini_cnf_run_path,
                           overwrite)

    elif job in ('energy', 'grad', 'hess'):

        # Script
        script_str, kwargs = qchem_params(method_dct)

        # Need to put in something with the IRC idxs
        for locs in ini_scn_save_fs[-1].existing():
            geo_run_path = ini_scn_run_fs[-1].path(locs)
            geo_save_path = ini_scn_save_fs[-1].path(locs)
            geo = ini_scn_save_fs[-1].file.geometry.read(locs)
            zma = None
            ini_scn_run_fs[-1].create(locs)
            ES_TSKS[job](zma, geo, spc_info, mod_thy_info, ini_scn_save_fs,
                         geo_run_path, geo_save_path, locs, script_str,
                         overwrite, **kwargs)
            ioprinter.obj('vspace')

    elif job == 'infene':
        pass
Ejemplo n.º 27
0
def run_tsk(tsk, spc_dct, spc_name, thy_dct, proc_keyword_dct, pes_mod_dct_i,
            spc_mod_dct_i, run_prefix, save_prefix):
    """ run a proc tess task
    for generating a list of conformer or tau sampling geometries
    """

    # Print the head of the task
    ioprinter.output_task_header(tsk)
    ioprinter.obj('line_dash')
    ioprinter.output_keyword_list(proc_keyword_dct, thy_dct)

    # Setup csv data dictionary for specific task
    csv_data = util.set_csv_data(tsk)
    chn_basis_ene_dct = {}
    spc_array = []

    # print species
    ioprinter.obj('line_dash')
    ioprinter.info_message("Species: ", spc_name)

    # Heat of formation basis molecules and coefficients
    # is not conformer specific
    if 'coeffs' in tsk:
        thy_info = spc_mod_dct_i['geo'][1]
        filelabel = 'coeffs'
        filelabel += '_{}'.format(pes_mod_dct_i['thermfit']['ref_scheme'])
        filelabel += '.csv'
        label = spc_name
        basis_dct, _ = basis.prepare_refs(
            pes_mod_dct_i['thermfit']['ref_scheme'], spc_dct, (spc_name, ))
        # Get the basis info for the spc of interest
        spc_basis, coeff_basis = basis_dct[spc_name]
        coeff_array = []
        for spc_i in spc_basis:
            if spc_i not in spc_array:
                spc_array.append(spc_i)
        for spc_i in spc_array:
            if spc_i in spc_basis:
                coeff_array.append(coeff_basis[spc_basis.index(spc_i)])
            else:
                coeff_array.append(0)
        csv_data[label] = [*coeff_array]

    else:
        # unpack spc and level info
        spc_dct_i = spc_dct[spc_name]
        if proc_keyword_dct['geolvl']:
            thy_info = tinfo.from_dct(thy_dct.get(proc_keyword_dct['geolvl']))
        else:
            thy_info = spc_mod_dct_i['geo'][1]

            # Loop over conformers
        if proc_keyword_dct['geolvl']:
            _, rng_cnf_locs_lst, rng_cnf_locs_path = util.conformer_list(
                proc_keyword_dct, save_prefix, run_prefix, spc_dct_i, thy_dct)
            spc_mod_dct_i, pf_models = None, None
        else:
            ret = util.conformer_list_from_models(proc_keyword_dct,
                                                  save_prefix, run_prefix,
                                                  spc_dct_i, thy_dct,
                                                  spc_mod_dct_i, pf_models)
            _, rng_cnf_locs_lst, rng_cnf_locs_path = ret
        for locs, locs_path in zip(rng_cnf_locs_lst, rng_cnf_locs_path):

            label = spc_name + '_' + '_'.join(locs)
            _, cnf_fs = filesys.build_fs(run_prefix, save_prefix, 'CONFORMER')
            if 'freq' in tsk:

                filelabel = 'freq'
                if spc_mod_dct_i:
                    filelabel += '_m{}'.format(spc_mod_dct_i['harm'][0])
                else:
                    filelabel += '_{}'.format(proc_keyword_dct['geolvl'])
                filelabel += '.csv'

                if pf_models:
                    pf_filesystems = filesys.models.pf_filesys(spc_dct_i,
                                                               spc_mod_dct_i,
                                                               run_prefix,
                                                               save_prefix,
                                                               saddle=False)
                    ret = vib.full_vib_analysis(spc_dct_i,
                                                pf_filesystems,
                                                spc_mod_dct_i,
                                                run_prefix,
                                                zrxn=None)
                    freqs, _, tors_zpe, sfactor, torsfreqs, all_freqs = ret
                    csv_data['tfreq'][label] = torsfreqs
                    csv_data['allfreq'][label] = all_freqs
                    csv_data['scalefactor'][label] = [sfactor]
                else:
                    es_model = util.freq_es_levels(proc_keyword_dct)
                    spc_mod_dct_i = parser.model.pf_level_info(
                        es_model, thy_dct)
                    try:
                        freqs, _, zpe = vib.read_locs_harmonic_freqs(
                            cnf_fs, locs, run_prefix, zrxn=None)
                    except:
                        freqs = []
                        zpe = 0

                tors_zpe = 0.0
                spc_data = []
                zpe = tors_zpe + (sum(freqs) / 2.0) * phycon.WAVEN2EH
                if freqs and proc_keyword_dct['scale'] is not None:
                    freqs, zpe = vib.scale_frequencies(freqs,
                                                       tors_zpe,
                                                       spc_mod_dct_i,
                                                       scale_method='3c')
                spc_data = [locs_path, zpe, *freqs]
                csv_data['freq'][label] = spc_data
            elif 'geo' in tsk:

                filelabel = 'geo'
                if spc_mod_dct_i:
                    filelabel += '_{}'.format(spc_mod_dct_i['harm'])
                else:
                    filelabel += '_{}'.format(proc_keyword_dct['geolvl'])
                filelabel += '.txt'

                if cnf_fs[-1].file.geometry.exists(locs):
                    geo = cnf_fs[-1].file.geometry.read(locs)
                    energy = cnf_fs[-1].file.energy.read(locs)
                    comment = 'energy: {0:>15.10f}'.format(energy)
                    xyz_str = automol.geom.xyz_string(geo, comment=comment)
                else:
                    xyz_str = '\t -- Missing --'
                spc_data = '\n\nSPC: {}\tConf: {}\tPath: {}\n'.format(
                    spc_name, locs, locs_path) + xyz_str

                csv_data[label] = spc_data

            elif 'zma' in tsk:

                filelabel = 'zmat'
                if spc_mod_dct_i:
                    filelabel += '_{}'.format(spc_mod_dct_i['harm'])
                else:
                    filelabel += '_{}'.format(proc_keyword_dct['geolvl'])
                filelabel += '.txt'

                geo = cnf_fs[-1].file.geometry.read(locs)
                zma = automol.geom.zmatrix(geo)
                energy = cnf_fs[-1].file.energy.read(locs)
                comment = 'energy: {0:>15.10f}\n'.format(energy)
                zma_str = automol.zmat.string(zma)
                spc_data = '\n\nSPC: {}\tConf: {}\tPath: {}\n'.format(
                    spc_name, locs, locs_path) + comment + zma_str
                csv_data[label] = spc_data

            elif 'ene' in tsk:

                filelabel = 'ene'
                if spc_mod_dct_i:
                    filelabel += '_{}'.format(spc_mod_dct_i['harm'])
                    filelabel += '_{}'.format(spc_mod_dct_i['ene'])
                else:
                    filelabel += '_{}'.format(proc_keyword_dct['geolvl'])
                    filelabel += '_{}'.format(proc_keyword_dct['proplvl'])
                filelabel += '.csv'

                energy = None
                if spc_mod_dct_i:
                    pf_filesystems = filesys.models.pf_filesys(spc_dct_i,
                                                               spc_mod_dct_i,
                                                               run_prefix,
                                                               save_prefix,
                                                               saddle=False)
                    energy = ene.electronic_energy(spc_dct_i,
                                                   pf_filesystems,
                                                   spc_mod_dct_i,
                                                   conf=(locs, locs_path,
                                                         cnf_fs))
                else:
                    spc_info = sinfo.from_dct(spc_dct_i)
                    thy_info = tinfo.from_dct(
                        thy_dct.get(proc_keyword_dct['proplvl']))
                    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)
                    sp_save_fs = autofile.fs.single_point(locs_path)
                    sp_save_fs[-1].create(mod_thy_info[1:4])
                    # Read the energy
                    sp_path = sp_save_fs[-1].path(mod_thy_info[1:4])
                    if os.path.exists(sp_path):
                        if sp_save_fs[-1].file.energy.exists(
                                mod_thy_info[1:4]):
                            ioprinter.reading('Energy', sp_path)
                            energy = sp_save_fs[-1].file.energy.read(
                                mod_thy_info[1:4])
                csv_data[label] = [locs_path, energy]

            elif 'enthalpy' in tsk:
                filelabel = 'enthalpy'
                if spc_mod_dct_i:
                    filelabel += '_{}'.format(spc_mod_dct_i['harm'])
                    filelabel += '_{}'.format(spc_mod_dct_i['ene'])
                else:
                    filelabel += '_{}'.format(proc_keyword_dct['geolvl'])
                    filelabel += '_{}'.format(proc_keyword_dct['proplvl'])
                filelabel = '.csv'

                energy = None
                pf_filesystems = filesys.models.pf_filesys(spc_dct_i,
                                                           spc_mod_dct_i,
                                                           run_prefix,
                                                           save_prefix,
                                                           saddle=False)
                ene_abs = ene.read_energy(spc_dct_i,
                                          pf_filesystems,
                                          spc_mod_dct_i,
                                          run_prefix,
                                          conf=(locs, locs_path, cnf_fs),
                                          read_ene=True,
                                          read_zpe=True,
                                          saddle=False)
                hf0k, _, chn_basis_ene_dct, hbasis = basis.enthalpy_calculation(
                    spc_dct,
                    spc_name,
                    ene_abs,
                    chn_basis_ene_dct,
                    pes_mod_dct_i,
                    spc_mod_dct_i,
                    run_prefix,
                    save_prefix,
                    pforktp='pf',
                    zrxn=None)
                spc_basis, coeff_basis = hbasis[spc_name]
                coeff_array = []
                for spc_i in spc_basis:
                    if spc_i not in spc_array:
                        spc_array.append(spc_i)
                for spc_i in spc_array:
                    if spc_i in spc_basis:
                        coeff_array.append(coeff_basis[spc_basis.index(spc_i)])
                    else:
                        coeff_array.append(0)
                csv_data[label] = [locs_path, ene_abs, hf0k, *coeff_array]

    util.write_csv_data(tsk, csv_data, filelabel, spc_array)
Ejemplo n.º 28
0
def run(spc_rlst, therm_tsk_lst, pes_mod_dct, spc_mod_dct, spc_dct, run_prefix,
        save_prefix):
    """ main driver for thermo run
    """

    # Print Header fo
    ioprinter.info_message('Calculating Thermochem:')
    ioprinter.runlst(('SPC', 0, 0), spc_rlst)

    # ------------------------------------------------ #
    # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS #
    # ------------------------------------------------ #

    # Build a list of the species to calculate thermochem for loops below
    spc_mods = list(spc_mod_dct.keys())  # hack
    split_spc_lst = split_unstable_spc(spc_rlst, spc_dct,
                                       spc_mod_dct[spc_mods[0]], save_prefix)
    spc_queue = parser.rlst.spc_queue('spc', tuple(split_spc_lst.values())[0])

    # Build the paths [(messpf, nasa)], models and levels for each spc
    thm_paths = thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix)

    # ----------------------------------- #
    # RUN THE REQUESTED THERMDRIVER TASKS #
    # ----------------------------------- #

    # Write and Run MESSPF inputs to generate the partition functions
    write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst)
    if write_messpf_tsk is not None:

        ioprinter.messpf('write_header')

        spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk)

        for idx, spc_name in enumerate(spc_queue):
            print('write test {}'.format(spc_name))
            for spc_mod in spc_mods:
                messpf_inp_str = thmroutines.qt.make_messpf_str(
                    pes_mod_dct[pes_mod]['therm_temps'], spc_dct, spc_name,
                    pes_mod_dct[pes_mod], spc_mod_dct[spc_mod], run_prefix,
                    save_prefix)
                ioprinter.messpf('input_string')
                ioprinter.info_message(messpf_inp_str)
                autorun.write_input(thm_paths[idx][spc_mod][0],
                                    messpf_inp_str,
                                    input_name='pf.inp')

    # Run the MESSPF files that have been written
    run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst)
    if run_messpf_tsk is not None:

        spc_mod, pes_mod = parser.models.extract_models(run_messpf_tsk)
        spc_mods = parser.models.split_model(spc_mod[0])

        ioprinter.messpf('run_header')
        for idx, spc_name in enumerate(spc_queue):

            _spc_mods, coeffs, operators = spc_mods

            # Run MESSPF for all requested models, combine the PFS at the end
            ioprinter.message('Run MESSPF: {}'.format(spc_name), newline=1)
            _pfs = []
            for spc_mod in _spc_mods:
                autorun.run_script(autorun.SCRIPT_DCT['messpf'],
                                   thm_paths[idx][spc_mod][0])
                _pfs.append(
                    pfrunner.mess.read_messpf(thm_paths[idx][spc_mod][0]))
            final_pf = pfrunner.mess.combine_pfs(_pfs, coeffs, operators)

            # need to clean thm path build
            tot_idx = len(spc_mods)
            spc_info = sinfo.from_dct(spc_dct[spc_name])
            spc_fml = automol.inchi.formula_string(spc_info[0])
            thm_prefix = [spc_fml, automol.inchi.inchi_key(spc_info[0])]
            thm_paths[idx]['final'] = (job_path(run_prefix,
                                                'MESS',
                                                'PF',
                                                thm_prefix,
                                                locs_idx=tot_idx),
                                       job_path(run_prefix,
                                                'THERM',
                                                'NASA',
                                                thm_prefix,
                                                locs_idx=tot_idx))
            pfrunner.mess.write_mess_output(fstring(
                spc_dct[spc_name]['inchi']),
                                            final_pf,
                                            thm_paths[idx]['final'][0],
                                            filename='pf.dat')

    # Use MESS partition functions to compute thermo quantities
    run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst)
    if run_fit_tsk is not None:

        spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk)
        pes_mod_dct_i = pes_mod_dct[pes_mod]

        ioprinter.nasa('header')
        chn_basis_ene_dct = {}
        for idx, spc_name in enumerate(spc_queue):

            # Take species model and add it to the chn_basis_ene dct
            spc_mod = spc_mods[0]
            spc_mod_dct_i = spc_mod_dct[spc_mod]
            if spc_mod not in chn_basis_ene_dct:
                chn_basis_ene_dct[spc_mod] = {}

            # Get the reference scheme and energies (ref in different place)
            ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme']
            ref_enes = pes_mod_dct_i['therm_fit']['ref_enes']

            # Determine info about the basis species used in thermochem calcs
            basis_dct, uniref_dct = thmroutines.basis.prepare_refs(
                ref_scheme, spc_dct, [[spc_name, None]], run_prefix,
                save_prefix)

            # Get the basis info for the spc of interest
            spc_basis, coeff_basis = basis_dct[spc_name]

            # Get the energies for the spc and its basis
            ene_basis = []
            energy_missing = False
            for spc_basis_i in spc_basis:
                if spc_basis_i in chn_basis_ene_dct[spc_mod]:
                    ioprinter.message(
                        'Energy already found for basis species: ' +
                        spc_basis_i)
                    ene_basis.append(chn_basis_ene_dct[spc_mod][spc_basis_i])
                else:
                    ioprinter.message(
                        'Energy will be determined for basis species: ' +
                        spc_basis_i)
                    energy_missing = True
            if not energy_missing:
                pf_filesystems = filesys.models.pf_filesys(spc_dct[spc_name],
                                                           spc_mod_dct_i,
                                                           run_prefix,
                                                           save_prefix,
                                                           saddle=False)
                ene_spc = ene.read_energy(spc_dct[spc_name],
                                          pf_filesystems,
                                          spc_mod_dct_i,
                                          run_prefix,
                                          read_ene=True,
                                          read_zpe=True,
                                          saddle=False)
            else:
                ene_spc, ene_basis = thmroutines.basis.basis_energy(
                    spc_name, spc_basis, uniref_dct, spc_dct, spc_mod_dct_i,
                    run_prefix, save_prefix)
                for spc_basis_i, ene_basis_i in zip(spc_basis, ene_basis):
                    chn_basis_ene_dct[spc_mod][spc_basis_i] = ene_basis_i

            # Calculate and store the 0 K Enthalpy
            hf0k = thmroutines.heatform.calc_hform_0k(ene_spc,
                                                      ene_basis,
                                                      spc_basis,
                                                      coeff_basis,
                                                      ref_set=ref_enes)
            spc_dct[spc_name]['Hfs'] = [hf0k]

        # Write the NASA polynomials in CHEMKIN format
        ckin_nasa_str = ''
        ckin_path = output_path('CKIN')
        for idx, spc_name in enumerate(spc_queue):

            ioprinter.nasa('calculate', spc_name)

            # Write the header describing the models used in thermo calcs
            ckin_nasa_str += writer.ckin.model_header(spc_mods, spc_mod_dct)

            # Build and write the NASA polynomial in CHEMKIN-format string
            # Call dies if you haven't run "write mess" task
            ckin_nasa_str += thmroutines.nasapoly.build_polynomial(
                spc_name, spc_dct, thm_paths[idx]['final'][0],
                thm_paths[idx]['final'][1])
            ckin_nasa_str += '\n\n'

            print(ckin_nasa_str)
        nasa7_params_all = chemkin_io.parser.thermo.create_spc_nasa7_dct(
            ckin_nasa_str)
        # print('ckin_nasa_str test', ckin_nasa_str)
        ioprinter.info_message(
            'SPECIES           H(0 K)  H(298 K)  S(298 K)  Cp(300 K) Cp(500 K) Cp(1000 K) Cp(1500 K)\n'
        )
        ioprinter.info_message(
            '                 kcal/mol kcal/mol cal/(mol K) ... \n')
        for spc_name in nasa7_params_all:
            nasa7_params = nasa7_params_all[spc_name]
            whitespace = 18 - len(spc_name)
            h0 = spc_dct[spc_name]['Hfs'][0]
            h298 = mechanalyzer.calculator.thermo.enthalpy(
                nasa7_params, 298.15) / 1000.
            s298 = mechanalyzer.calculator.thermo.entropy(nasa7_params, 298.15)
            cp300 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 300)
            cp500 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 500)
            cp1000 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 1000)
            cp1500 = mechanalyzer.calculator.thermo.heat_capacity(
                nasa7_params, 1500)
            whitespace = whitespace * ' '
            ioprinter.info_message(
                '{}{}{:>7.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}{:>9.2f}'.
                format(spc_name, whitespace, h0, h298, s298, cp300, cp500,
                       cp1000, cp1500))

        # Write all of the NASA polynomial strings
        writer.ckin.write_nasa_file(ckin_nasa_str, ckin_path)
Ejemplo n.º 29
0
def tau_data(spc_dct_i, spc_mod_dct_i, run_prefix, save_prefix, saddle=False):
    """ Read the filesystem to get information for TAU
    """

    # Set up model and basic thy objects
    spc_info = sinfo.from_dct(spc_dct_i)
    thy_info = spc_mod_dct_i['vib']['geolvl'][1][1]
    mod_thy_info = tinfo.modify_orb_label(thy_info, spc_info)

    vib_model = spc_mod_dct_i['vib']['mod']

    # Set up reference conformer filesys
    pf_filesystems = filesys.models.pf_filesys(spc_dct_i, spc_mod_dct_i,
                                               run_prefix, save_prefix, saddle)
    [harm_save_fs, _, harm_min_locs, _, _] = pf_filesystems['harm']

    # Obtain all values from initial reference conformer
    rotors = tors.build_rotors(spc_dct_i,
                               pf_filesystems,
                               spc_mod_dct_i,
                               read_potentials=False)
    vib_info = vib.full_vib_analysis(spc_dct_i,
                                     pf_filesystems,
                                     spc_mod_dct_i,
                                     run_prefix,
                                     zrxn=None)
    freqs, _, zpe, _, tors_strs, _, harm_freqs, _ = vib_info
    harm_zpve = 0.5 * sum(harm_freqs) * phycon.WAVEN2EH

    ioprinter.info_message('Determining the symmetry factor...', newline=1)
    sym_factor = symm.symmetry_factor(
        pf_filesystems,
        spc_mod_dct_i,
        spc_dct_i,
        rotors,
    )

    zpe_chnlvl = zpe * phycon.EH2KCAL
    ref_ene = harm_zpve * phycon.EH2KCAL

    ref_geom = [harm_save_fs[-1].file.geometry.read(harm_min_locs)]
    ref_grad = [harm_save_fs[-1].file.gradient.read(harm_min_locs)]
    ref_hessian = [harm_save_fs[-1].file.hessian.read(harm_min_locs)]

    min_cnf_ene = filesys.read.energy(harm_save_fs, harm_min_locs,
                                      mod_thy_info)

    # Set up the TAU filesystem objects, get locs, and read info
    _, tau_save_fs = filesys.build_fs(run_prefix,
                                      save_prefix,
                                      'TAU',
                                      spc_locs=spc_info,
                                      thy_locs=mod_thy_info[1:])

    db_style = 'jsondb'
    vib_model = spc_mod_dct_i['vib']['mod']
    if vib_model == 'tau':
        if db_style == 'directory':
            tau_locs = [
                locs for locs in tau_save_fs[-1].existing()
                if tau_save_fs[-1].file.hessian.exists(locs)
            ]
        elif db_style == 'jsondb':
            tau_locs = [
                locs for locs in tau_save_fs[-1].json_existing()
                if tau_save_fs[-1].json.hessian.exists(locs)
            ]
    else:
        if db_style == 'directory':
            tau_locs = tau_save_fs[-1].existing()
        elif db_style == 'jsondb':
            tau_locs = tau_save_fs[-1].json_existing()

    ioprinter.info_message(
        'Reading data for the Monte Carlo samples from db.json'
        f'at path {tau_save_fs[0].path()}')
    samp_geoms, samp_enes, samp_grads, samp_hessians = [], [], [], []
    tot_locs = len(tau_locs)
    for idx, locs in enumerate(tau_locs):

        if db_style == 'directory':
            geo = tau_save_fs[-1].file.geometry.read(locs)
        elif db_style == 'jsondb':
            geo = tau_save_fs[-1].json.geometry.read(locs)

        # geo_str = autofile.data_types.swrite.geometry(geo)
        samp_geoms.append(geo)

        if db_style == 'directory':
            tau_ene = tau_save_fs[-1].file.energy.read(locs)
        elif db_style == 'jsondb':
            tau_ene = tau_save_fs[-1].json.energy.read(locs)
        rel_ene = (tau_ene - min_cnf_ene) * phycon.EH2KCAL
        # ene_str = autofile.data_types.swrite.energy(rel_ene)
        samp_enes.append(rel_ene)

        if vib_model == 'tau':
            if db_style == 'directory':
                grad = tau_save_fs[-1].file.gradient.read(locs)
            elif db_style == 'jsondb':
                grad = tau_save_fs[-1].json.gradient.read(locs)
            # grad_str = autofile.data_types.swrite.gradient(grad)
            samp_grads.append(grad)

            if db_style == 'directory':
                hess = tau_save_fs[-1].file.hessian.read(locs)
            elif db_style == 'jsondb':
                hess = tau_save_fs[-1].json.hessian.read(locs)
            # hess_str = autofile.data_types.swrite.hessian(hess)
            samp_hessians.append(hess)

        # Print progress message (every 150 geoms read)
        if idx % 149 == 0:
            print(f'Read {idx+1}/{tot_locs} samples...')

    # Determine the successful conformer ratio
    inf_obj = tau_save_fs[0].file.info.read()
    excluded_volume_factor = len(samp_geoms) / inf_obj.nsamp
    print('excluded volume factor test:', excluded_volume_factor,
          len(samp_geoms), inf_obj.nsamp)

    # Create info dictionary
    keys = [
        'geom', 'sym_factor', 'elec_levels', 'freqs', 'flux_mode_str',
        'samp_geoms', 'samp_enes', 'samp_grads', 'samp_hessians', 'ref_geom',
        'ref_grad', 'ref_hessian', 'zpe_chnlvl', 'ref_ene',
        'excluded_volume_factor'
    ]
    vals = [
        ref_geom[0], sym_factor, spc_dct_i['elec_levels'], freqs, tors_strs[2],
        samp_geoms, samp_enes, samp_grads, samp_hessians, ref_geom, ref_grad,
        ref_hessian, zpe_chnlvl, ref_ene, excluded_volume_factor
    ]
    inf_dct = dict(zip(keys, vals))

    return inf_dct
Ejemplo n.º 30
0
def run(pes_rlst, spc_rlst,
        therm_tsk_lst,
        pes_mod_dct, spc_mod_dct,
        spc_dct,
        run_prefix, save_prefix):
    """ Executes all thermochemistry tasks.

        :param pes_rlst: species from PESs to run
            [(PES formula, PES idx, SUP-PES idx)
            (CHANNEL idx, (REACS, PRODS))
        :type pes_rlst: tuple(dict[str: dict])
        :param spc_rlst: lst of species to run
        :type spc_rlst: tuple(dict[str: dict])
        :param es_tsk_lst: list of the electronic structure tasks
            tuple(tuple(obj, tsk, keyword_dict))
        :type es_tsk_lst: tuple(tuple(str, str, dict))
        :param spc_dct: species information
            dict[spc_name: spc_information]
        :type spc_dct: dict[str:dict]
        :param glob_dct: global information for all species
            dict[spc_name: spc_information]
        :type glob_dct: dict[str: dict]
        :param thy_dct: all of the theory information
            dict[thy name: inf]
        :type thy_dct: dict[str:dict]
        :param run_prefix: root-path to the run-filesystem
        :type run_prefix: str
        :param save_prefix: root-path to the save-filesystem
        :type save_prefix: str
    """

    # Print Header
    ioprinter.info_message('Calculating Thermochem:')
    ioprinter.runlst(('SPC', 0, 0), spc_rlst)

    # ------------------------------------------------ #
    # PREPARE INFORMATION TO PASS TO THERMDRIVER TASKS #
    # ------------------------------------------------ #

    # Build a list of the species to calculate thermochem for loops below
    spc_mods = list(spc_mod_dct.keys())  # hack
    spc_mod_dct_i = spc_mod_dct[spc_mods[0]]
    split_rlst = split_unstable_full(
        pes_rlst, spc_rlst, spc_dct, spc_mod_dct_i, save_prefix)
    spc_queue = parser.rlst.spc_queue(
        tuple(split_rlst.values())[0], 'SPC')

    # Build the paths [(messpf, nasa)], models and levels for each spc
    thm_paths = thermo_paths(spc_dct, spc_queue, spc_mods, run_prefix)

    # ----------------------------------- #
    # RUN THE REQUESTED THERMDRIVER TASKS #
    # ----------------------------------- #

    # Write and Run MESSPF inputs to generate the partition functions
    write_messpf_tsk = parser.run.extract_task('write_mess', therm_tsk_lst)
    if write_messpf_tsk is not None:

        ioprinter.messpf('write_header')

        spc_mods, pes_mod = parser.models.extract_models(write_messpf_tsk)

        for idx, spc_name in enumerate(spc_queue):
            print('write test {}'.format(spc_name))
            for spc_mod in spc_mods:
                messpf_inp_str = thmroutines.qt.make_messpf_str(
                    pes_mod_dct[pes_mod]['therm_temps'],
                    spc_dct, spc_name,
                    pes_mod_dct[pes_mod], spc_mod_dct[spc_mod],
                    run_prefix, save_prefix)
                ioprinter.messpf('input_string')
                ioprinter.info_message(messpf_inp_str)
                autorun.write_input(
                    thm_paths[idx][spc_mod][0], messpf_inp_str,
                    input_name='pf.inp')

    # Run the MESSPF files that have been written
    run_messpf_tsk = parser.run.extract_task('run_mess', therm_tsk_lst)
    if run_messpf_tsk is not None:

        spc_mod, pes_mod = parser.models.extract_models(run_messpf_tsk)
        spc_mods = parser.models.split_model(spc_mod[0])

        ioprinter.messpf('run_header')
        for idx, spc_name in enumerate(spc_queue):

            _spc_mods, coeffs, operators = spc_mods

            # Run MESSPF for all requested models, combine the PFS at the end
            ioprinter.message('Run MESSPF: {}'.format(spc_name), newline=1)
            _pfs = []
            for spc_mod in _spc_mods:
                autorun.run_script(
                   autorun.SCRIPT_DCT['messpf'],
                   thm_paths[idx][spc_mod][0])
                _pfs.append(
                    reader.mess.messpf(thm_paths[idx][spc_mod][0]))
            final_pf = thermfit.pf.combine(_pfs, coeffs, operators)

            # need to clean thm path build
            tdx = len(spc_mods)
            spc_info = sinfo.from_dct(spc_dct[spc_name])
            spc_fml = automol.inchi.formula_string(spc_info[0])
            thm_prefix = [spc_fml, automol.inchi.inchi_key(spc_info[0])]
            thm_paths[idx]['final'] = (
                job_path(run_prefix, 'MESS', 'PF', thm_prefix, locs_idx=tdx),
                job_path(run_prefix, 'THERM', 'NASA', thm_prefix, locs_idx=tdx)
            )
            writer.mess.output(
                fstring(spc_dct[spc_name]['inchi']),
                final_pf, thm_paths[idx]['final'][0],
                filename='pf.dat')

    # Use MESS partition functions to compute thermo quantities
    run_fit_tsk = parser.run.extract_task('run_fits', therm_tsk_lst)
    if run_fit_tsk is not None:

        spc_mods, pes_mod = parser.models.extract_models(run_fit_tsk)
        pes_mod_dct_i = pes_mod_dct[pes_mod]

        ioprinter.nasa('header')
        chn_basis_ene_dct = {}
        for idx, spc_name in enumerate(spc_queue):

            # Take species model and add it to the chn_basis_ene dct
            spc_mod = spc_mods[0]
            spc_mod_dct_i = spc_mod_dct[spc_mod]
            if spc_mod not in chn_basis_ene_dct:
                chn_basis_ene_dct[spc_mod] = {}

            # Get the reference scheme and energies (ref in different place)
            ref_scheme = pes_mod_dct_i['therm_fit']['ref_scheme']
            ref_enes = pes_mod_dct_i['therm_fit']['ref_enes']

            # Determine info about the basis species used in thermochem calcs
            basis_dct, uniref_dct = thermfit.prepare_refs(
                ref_scheme, spc_dct, (spc_name,))

            # Get the basis info for the spc of interest
            spc_basis, coeff_basis = basis_dct[spc_name]

            # Get the energies for the spc and its basis
            ene_basis = []
            energy_missing = False
            for spc_basis_i in spc_basis:
                if spc_basis_i in chn_basis_ene_dct[spc_mod]:
                    ioprinter.message(
                        'Energy already found for basis species: '
                        + spc_basis_i)
                    ene_basis.append(chn_basis_ene_dct[spc_mod][spc_basis_i])
                else:
                    ioprinter.message(
                        'Energy will be determined for basis species: '
                        + spc_basis_i)
                    energy_missing = True
            if not energy_missing:
                pf_filesystems = filesys.models.pf_filesys(
                    spc_dct[spc_name], spc_mod_dct_i,
                    run_prefix, save_prefix, saddle=False)
                ene_spc = ene.read_energy(
                    spc_dct[spc_name], pf_filesystems, spc_mod_dct_i,
                    run_prefix, read_ene=True, read_zpe=True, saddle=False)
            else:
                ene_spc, ene_basis = thmroutines.basis.basis_energy(
                    spc_name, spc_basis, uniref_dct, spc_dct,
                    spc_mod_dct_i,
                    run_prefix, save_prefix)
                for spc_basis_i, ene_basis_i in zip(spc_basis, ene_basis):
                    chn_basis_ene_dct[spc_mod][spc_basis_i] = ene_basis_i

            # Calculate and store the 0 K Enthalpy
            hf0k = thermfit.heatform.calc_hform_0k(
                ene_spc, ene_basis, spc_basis, coeff_basis, ref_set=ref_enes)
            spc_dct[spc_name]['Hfs'] = [hf0k]

        # Write the NASA polynomials in CHEMKIN format
        ckin_nasa_str = ''
        ckin_path = output_path('CKIN')
        for idx, spc_name in enumerate(spc_queue):

            ioprinter.nasa('calculate', spc_name)

            # Write the header describing the models used in thermo calcs
            ckin_nasa_str += writer.ckin.model_header(spc_mods, spc_mod_dct)

            # Build and write the NASA polynomial in CHEMKIN-format string
            # Call dies if you haven't run "write mess" task
            ckin_nasa_str += thmroutines.nasapoly.build_polynomial(
                spc_name, spc_dct,
                thm_paths[idx]['final'][0], thm_paths[idx]['final'][1])
            ckin_nasa_str += '\n\n'
        print('CKIN NASA STR\n')
        print(ckin_nasa_str)

        nasa7_params_all = chemkin_io.parser.thermo.create_spc_nasa7_dct(
            ckin_nasa_str)
        ioprinter.info_message(
            'SPECIES\t\tH(0 K)[kcal/mol]\tH(298 K)[kcal/mol]\t' +
            'S(298 K)[cal/mol K]\n')
        for spc_name in nasa7_params_all:
            nasa7_params = nasa7_params_all[spc_name]
            ht0 = spc_dct[spc_name]['Hfs'][0]
            ht298 = mechanalyzer.calculator.thermo.enthalpy(
                nasa7_params, 298.15)
            st298 = mechanalyzer.calculator.thermo.entropy(
                nasa7_params, 298.15)
            ioprinter.info_message(
                '{}\t{:3.2f}\t{:3.2f}\t{:3.2f}'.format(
                    spc_name, ht0, ht298/1000., st298))

        # Write all of the NASA polynomial strings
        writer.ckin.write_nasa_file(ckin_nasa_str, ckin_path)