Ejemplo n.º 1
0
    def generate_anchors_opr(self,
                             fm_3x3,
                             fm_stride,
                             anchor_scales=(8, 16, 32, 64, 128),
                             anchor_ratios=(1, 2, 3),
                             base_size=4):

        np_anchors = generate_anchors(base_size=base_size,
                                      ratios=np.array(anchor_ratios),
                                      scales=np.array(anchor_scales))
        device = fm_3x3.device
        anchors = mge.tensor(np_anchors).to(device)
        height, width = fm_3x3.shape[2], fm_3x3.shape[3]
        shift_x = F.linspace(0, width - 1, width).to(device) * fm_stride
        shift_y = F.linspace(0, height - 1, height).to(device) * fm_stride

        broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1),
                                       (height, width)).flatten()
        broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1),
                                       (height, width)).flatten()
        shifts = F.stack(
            [broad_shift_x, broad_shift_y, broad_shift_x, broad_shift_y],
            axis=1)

        c = anchors.shape[1]
        all_anchors = F.expand_dims(anchors, axis=0) + F.expand_dims(shifts,
                                                                     axis=1)
        all_anchors = all_anchors.reshape(-1, c).detach()
        return all_anchors
Ejemplo n.º 2
0
    def get_center_offsets(self, featmap, stride):

        # f_shp = featmap.shape
        # fm_height, fm_width = f_shp[-2], f_shp[-1]
        fm_height, fm_width = featmap.shape[2:]
        shift_x = F.linspace(0, fm_width - 1, fm_width) * stride
        shift_y = F.linspace(0, fm_height - 1, fm_height) * stride

        # make the mesh grid of shift_x and shift_y
        mesh_shape = (fm_height, fm_width)

        broad_shift_x = F.broadcast_to(shift_x.reshape(1, -1), mesh_shape)
        broad_shift_y = F.broadcast_to(shift_y.reshape(-1, 1), mesh_shape)
        # broad_shift_x = shift_x.reshape(-1, shift_x.shape[0]).broadcast_to(*mesh_shape)
        # broad_shift_y = shift_y.reshape(shift_y.shape[0], -1).broadcast_to(*mesh_shape)

        flatten_shift_x = broad_shift_x.flatten()
        flatten_shift_y = broad_shift_y.flatten()
        shifts = F.stack([
            flatten_shift_x, flatten_shift_y, flatten_shift_x, flatten_shift_y
        ],
                         axis=1)
        # flatten_shift_x = F.add_axis(broad_shift_x.reshape(-1), 1)
        # flatten_shift_y = F.add_axis(broad_shift_y.reshape(-1), 1)

        # shifts = F.concat(
        #     [flatten_shift_x, flatten_shift_y, flatten_shift_x, flatten_shift_y,],
        #     axis=1)
        return shifts
Ejemplo n.º 3
0
def meshgrid(x, y):
    assert len(x.shape) == 1
    assert len(y.shape) == 1
    mesh_shape = (y.shape[0], x.shape[0])
    mesh_x = F.broadcast_to(x, mesh_shape)
    mesh_y = F.broadcast_to(y.reshape(-1, 1), mesh_shape)
    return mesh_x, mesh_y
Ejemplo n.º 4
0
    def _get_mat3x3(self, image):
        """get perspective matrix used in the transformation
        note: there are only 8 degrees of freedom in a perspective matrix, while the output matrix has 9 variables.

        Args:
            image (Tensor): input images (shape: n * 3 * 112 * 112)

        Returns:
            mat3x3 (Tensor): perspective matrix (shape: n * 3 * 3)
        """
        x = self.stem(image)
        x = F.avg_pool2d(x, 7)
        x = F.flatten(x, 1)
        x = self.fc(x)

        s = self.input_size
        # 0.01 here is a magic number. it aims to maintain identity transform at early stage of training
        residual = x.reshape(-1, 3, 3) * 0.01
        base = mge.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).astype("float32")
        base = F.broadcast_to(base, residual.shape)
        left_scale = mge.tensor([[s, 0, 0], [0, s, 0], [0, 0,
                                                        1]]).astype("float32")
        left_scale = F.broadcast_to(left_scale, residual.shape)
        right_scale = mge.tensor([[1 / s, 0, 0], [0, 1 / s, 0],
                                  [0, 0, 1]]).astype("float32")
        right_scale = F.broadcast_to(right_scale, residual.shape)
        mat3x3 = F.matmul(left_scale, F.matmul(base + residual, right_scale))
        return mat3x3
Ejemplo n.º 5
0
def mask_anchor_opr(gtboxes, im_info, anchors, labels):

    eps = 1e-6
    gtboxes = gtboxes[:im_info[5].astype(np.int32), :]
    ignore_mask = (gtboxes[:, 4] < 0).astype(np.float32)

    mask_flag = F.zeros(labels.shape[0])
    N, K = anchors.shape[0], gtboxes.shape[0]
    p_pred = F.broadcast_to(F.expand_dims(anchors, 1),
                            (N, K, anchors.shape[1]))
    p_gt = F.broadcast_to(F.expand_dims(gtboxes, 0), (N, K, gtboxes.shape[1]))

    max_off = F.concat([
        F.maximum(p_pred[:, :, :2], p_gt[:, :, :2]),
        F.minimum(p_pred[:, :, 2:4], p_gt[:, :, 2:4])
    ],
                       axis=2)

    I = F.maximum(max_off[:, :, 2] - max_off[:, :, 0] + 1, 0) * F.maximum(
        max_off[:, :, 3] - max_off[:, :, 1] + 1, 0)
    A = F.maximum(p_pred[:, :, 2] - p_pred[:, :, 0] + 1, 0) * F.maximum(
        p_pred[:, :, 3] - p_pred[:, :, 1] + 1, 0)

    # I = F.maximum(I, 0)
    # A = F.maximum(A, 0)
    IoA = I / (A + eps)
    IoA = IoA * F.expand_dims(ignore_mask, 0)
    mask_flag = (IoA > 0.5).sum(axis=1) > 0

    labels = labels - F.equal(labels, 0).astype(np.float32) * mask_flag.astype(
        np.float32)
    return labels
Ejemplo n.º 6
0
def meshgrid(x, y):
    """meshgrid wrapper for megengine"""
    assert len(x.shape) == 1
    assert len(y.shape) == 1
    mesh_shape = (y.shape[0], x.shape[0])
    mesh_x = F.broadcast_to(x, mesh_shape)
    mesh_y = F.broadcast_to(y.reshape(-1, 1), mesh_shape)
    return mesh_x, mesh_y
Ejemplo n.º 7
0
def test_broadcast_auto_infer(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    x = np.random.random((1, 2, 3)).astype(np.float32)
    xx = make_tensor(x, network)

    for shape in [
        (1, 2, 3),
        (1, None, 3),
    ]:
        yy = F.broadcast_to(xx, shape)
        np.testing.assert_equal(yy.numpy(), x)

    with pytest.raises(ValueError):
        F.broadcast_to(xx, (1, -1, 3))

    with pytest.raises(ValueError):
        F.broadcast_to(xx, (None, 1, 2, 3))

    F.broadcast_to(xx, (1, None, 2, 3))
    t = tensor(2, dtype=np.int32)
    F.broadcast_to(xx, (t, None, 2, 3))
Ejemplo n.º 8
0
def box_overlap_ignore_opr(box: Tensor, gt: Tensor, ignore_label=-1) -> Tensor:
    """
    Given two lists of boxes of size N and M,
    compute the IoU (intersection over union)
    between __all__ N x M pairs of boxes.
    The box order must be (xmin, ymin, xmax, ymax).

    Args:
        boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively.

    Returns:
        Tensor: IoU, sized [N,M].
    """
    # box = boxes1
    # gt = boxes2
    # target_shape = (boxes1.shapeof()[0], boxes2.shapeof()[0], 4)
    eps = 1e-5
    N, K = box.shape[0], gt.shape[0]
    b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1]))
    b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1]))

    # b_box = F.add_axis(boxes1, 1).broadcast(*target_shape)
    # b_gt = F.add_axis(boxes2[:, :4], 0).broadcast(*target_shape)

    iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum(
        b_box[:, :, 0], b_gt[:, :, 0])
    ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum(
        b_box[:, :, 1], b_gt[:, :, 1])
    inter = F.maximum(iw, 0) * F.maximum(ih, 0)

    area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(
        box[:, 3] - box[:, 1], 0)
    area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(
        gt[:, 3] - gt[:, 1], 0)
    # area_target_shape = (box.shapeof()[0], gt.shapeof()[0])
    # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape)
    # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape)
    b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K)) + eps
    b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K))
    union = b_area_box + b_area_gt - inter + eps

    overlaps_normal = F.maximum(inter / union, 0)
    overlaps_ignore = F.maximum(inter / b_area_box, 0)
    overlaps = F.maximum(inter / union, 0)

    # gt_ignore_mask = F.add_axis(F.equal(gt[:, 4], ignore_label), 0).broadcast(*area_target_shape)
    ignore_mask = F.equal(gt[:, 4], ignore_label)
    gt_ignore_mask = F.expand_dims(ignore_mask, 0)
    overlaps_normal *= (1 - gt_ignore_mask)
    overlaps_ignore *= gt_ignore_mask
    return overlaps_normal, overlaps_ignore
Ejemplo n.º 9
0
def box_overlap_opr(box: Tensor, gt: Tensor) -> Tensor:
    """
    Given two lists of boxes of size N and M,
    compute the IoU (intersection over union)
    between __all__ N x M pairs of boxes.
    The box order must be (xmin, ymin, xmax, ymax).

    Args:
        boxes1,boxes2 (Boxes): two `Boxes`. Contains N & M boxes, respectively.

    Returns:
        Tensor: IoU, sized [N,M].
    """
    # box = boxes1
    # gt = boxes2
    # target_shape = (boxes1.shape[0], boxes2.shape[0], 4)

    N, K = box.shape[0], gt.shape[0]
    b_box = F.broadcast_to(F.expand_dims(box, 1), (N, K, box.shape[1]))
    b_gt = F.broadcast_to(F.expand_dims(gt, 0), (N, K, gt.shape[1]))
    # b_gt = F.expand_dims(gt, 0).broadcast_to(N, K, gt.shape[1])

    # b_box = F.expand_dims(boxes1, 1).broadcast(*target_shape)
    # b_gt = F.expand_dims(boxes2, 0).broadcast(*target_shape)

    iw = F.minimum(b_box[:, :, 2], b_gt[:, :, 2]) - F.maximum(
        b_box[:, :, 0], b_gt[:, :, 0])
    ih = F.minimum(b_box[:, :, 3], b_gt[:, :, 3]) - F.maximum(
        b_box[:, :, 1], b_gt[:, :, 1])
    inter = F.maximum(iw, 0) * F.maximum(ih, 0)

    area_box = F.maximum(box[:, 2] - box[:, 0], 0) * F.maximum(
        box[:, 3] - box[:, 1], 0)
    area_gt = F.maximum(gt[:, 2] - gt[:, 0], 0) * F.maximum(
        gt[:, 3] - gt[:, 1], 0)

    # area_target_shape = (box.shape[0], gt.shapeof()[0])
    b_area_box = F.broadcast_to(F.expand_dims(area_box, 1), (N, K))
    b_area_gt = F.broadcast_to(F.expand_dims(area_gt, 0), (N, K))
    # b_area_box = F.expand_dims(area_box, 1).broadcast_to(N, K)
    # b_area_gt = F.expand_dims(area_gt, 0).broadcast_to(N, K)
    # b_area_box = F.add_axis(area_box, 1).broadcast(*area_target_shape)
    # b_area_gt = F.add_axis(area_gt, 0).broadcast(*area_target_shape)

    union = b_area_box + b_area_gt - inter
    overlaps = F.maximum(inter / union, 0)

    return overlaps
Ejemplo n.º 10
0
    def anchor_iou_target_opr(self, boxes, im_info, all_anchors,
                              rpn_bbox_offsets):

        n = rpn_bbox_offsets.shape[0]
        res = []
        for i in range(n):

            gtboxes = boxes[i, :im_info[i, 5].astype(np.int32)]
            offsets = rpn_bbox_offsets[i].reshape(-1, 4).detach()
            m = offsets.shape[0]
            an, ac = all_anchors.shape[0], all_anchors.shape[1]
            anchors = F.broadcast_to(F.expand_dims(all_anchors, 1),
                                     (an, 1, ac)).reshape(-1, ac)
            dtboxes = bbox_transform_inv_opr(anchors[:, :4], offsets[:, :4])
            overlaps = box_overlap_opr(dtboxes, gtboxes[:, :4])
            ignore_mask = 1 - F.equal(
                gtboxes[:, 4], config.anchor_ignore_label).astype(np.float32)
            ignore_mask = F.expand_dims(ignore_mask, axis=0)
            overlaps = overlaps * ignore_mask

            index = F.argmax(overlaps, axis=1)
            value = F.nn.indexing_one_hot(overlaps, index, 1)
            value = F.expand_dims(F.expand_dims(value, axis=1), axis=0)
            res.append(value)

        result = F.concat(res, 0)
        return result
Ejemplo n.º 11
0
 def forward(self, mid, ref):
     B, C, H, W = mid.shape
     mid = F.normalize(mid, p=2, axis=1)
     ref = F.normalize(ref, p=2, axis=1)
     cost_volume, ref = compute_cost_volume(
         mid, ref, max_displacement=self.d)  # [B, (2d+1)**2, H, W]
     cost_volume = F.dimshuffle(cost_volume, (0, 2, 3, 1))
     cost_volume = cost_volume.reshape((-1, (2 * self.d + 1)**2))
     # argmax
     indices = F.top_k(cost_volume, k=self.K,
                       descending=True)[1]  # [B*H*W, K]
     del cost_volume
     ref_list = []  # [B, C, H, W]
     origin_i_j = F.arange(0, H * W, 1)  # float32
     origin_i = F.floor(origin_i_j / W)  # (H*W, )
     origin_j = F.mod(origin_i_j, W)  # (H*W, )
     del origin_i_j
     # reshape ref
     ref = ref.reshape((B, C, (H + 2 * self.d) * (W + 2 * self.d)))
     for i in range(self.K):
         index = indices[:, i]  # [B*H*W, ]
         index = index.reshape((-1, H * W))
         index_i = F.floor(index / (2 * self.d + 1)) + origin_i  # [B, H*W]
         index_j = F.mod(index, (2 * self.d + 1)) + origin_j  # [B, H*W]
         # 根据每个pixel的i,j 算出index
         index = index_i * W + index_j  # [B, H*W]
         index = index.astype('int32')
         # add axis
         index = F.add_axis(index, axis=1)  # [B, 1, H*W]
         # broadcast
         index = F.broadcast_to(index, (B, C, H * W))
         # gather
         output = F.gather(ref, axis=2, index=index)  # [B, C, H*W]
         ref_list.append(output.reshape((B, C, H, W)))
     return self.conv(F.concat(ref_list, axis=1))
Ejemplo n.º 12
0
 def forward(self, in_tensor):
     avg_pool = F.avg_pool2d(in_tensor,
                             (in_tensor.shape[2], in_tensor.shape[3]),
                             stride=(in_tensor.shape[2],
                                     in_tensor.shape[3]))
     x = self.gate_c(avg_pool)
     x = F.expand_dims(x, axis=[2, 3])  # b,48,1
     x = F.broadcast_to(x, in_tensor.shape)  # b,48,h,w
     return x
Ejemplo n.º 13
0
def test_Broadcast():
    x_np = np.random.rand(3, 3, 1).astype("float32")
    x = TensorWrapper(x_np)

    grad = Grad().wrt(x, callback=save_to(x))
    y = F.broadcast_to(x, (3, 3, 10))

    grad(y, F.ones_like(y))
    np.testing.assert_equal(np.ones((3, 3, 1), dtype=np.float32) * 10, x.grad.numpy())
Ejemplo n.º 14
0
def get_flow_mge(H_mat_mul, patch_indices, image_size_h=600, image_size_w=800):
    # (N, 6, 3, 3)
    batch_size = H_mat_mul.shape[0]
    divide = H_mat_mul.shape[1]
    H_mat_mul = mge.Tensor(H_mat_mul.reshape(batch_size, divide, 3, 3))

    small_patch_sz = [image_size_h // divide, image_size_w]
    small = 1e-7

    H_mat_pool = F.zeros((batch_size, image_size_h, image_size_w, 3, 3))

    for i in range(divide):
        H_mat = H_mat_mul[:, i, :, :]

        if i == divide - 1:
            H_mat = F.broadcast_to(F.expand_dims(F.expand_dims(H_mat, 1), 1),
                                   (batch_size, image_size_h -
                                    i * small_patch_sz[0], image_size_w, 3, 3))
            H_mat_pool[:, i * small_patch_sz[0]:, ...] = H_mat
            continue

        H_mat = F.broadcast_to(F.expand_dims(F.expand_dims(
            H_mat, 1), 1), (batch_size, small_patch_sz[0], image_size_w, 3, 3))
        H_mat_pool[:, i * small_patch_sz[0]:(i + 1) * small_patch_sz[0],
                   ...] = H_mat

    pred_I2_index_warp = F.expand_dims(patch_indices.transpose(0, 2, 3, 1), 4)
    pred_I2_index_warp = F.matmul(H_mat_pool,
                                  pred_I2_index_warp)[:, :, :, :,
                                                      0].transpose(0, 3, 1, 2)
    T_t = pred_I2_index_warp[:, 2:3, ...]
    smallers = 1e-6
    T_t = T_t + smallers
    v1 = pred_I2_index_warp[:, 0:1, ...]
    v2 = pred_I2_index_warp[:, 1:2, ...]
    v1 = v1 / T_t
    v2 = v2 / T_t
    warp_index = F.concat((v1, v2), 1)
    vgrid = patch_indices[:, :2, ...]

    flow = warp_index - vgrid
    return flow
Ejemplo n.º 15
0
    def recover_pred_boxes(self, rcnn_rois, prob, nhead):

        n = prob.shape[0]
        prob = prob.reshape(n, nhead, -1)
        prob = prob.reshape(-1, prob.shape[2])

        cls_score, bbox_pred = prob[:, -self.n:], prob[:, :-self.n]
        cls_prob = F.softmax(cls_score, axis=1)
        m, c = rcnn_rois.shape
        rois = F.broadcast_to(F.expand_dims(rcnn_rois, axis = 1), (m, nhead, c)).reshape(-1, c)
        bbox_pred = bbox_pred.reshape(n * nhead, -1, 4)
        
        pred_boxes = restore_bbox(rois[:, 1:5], bbox_pred, config = config)
        cls_prob = F.expand_dims(cls_prob, axis=2)
        pred_boxes = F.concat([pred_boxes, cls_prob], axis=2)
        n, c = bbox_pred.shape[:2]
        bid = F.broadcast_to(F.expand_dims(rois[:, :1], axis=1), (n, c, 1))
        pred_boxes = F.concat([pred_boxes, bid], axis = 2)

        return pred_boxes.detach()
Ejemplo n.º 16
0
 def forward(self, data, quad):
     """
     data: (1, 3, 48, 160)
     quad: (1, 4, 2)
     """
     N = quad.shape[0]
     dst = F.repeat(self.bb_out, N, axis=0).reshape(-1, 4, 2)
     I = F.broadcast_to(self.I, quad.shape)
     A = F.broadcast_to(self.A, (N, 8, 8))
     A[:, 0:4, 0:2] = quad
     A[:, 4:8, 5:6] = I[:, :, 0:1]
     A[:, 0:4, 6:8] = -quad * dst[:, :, 0:1]
     A[:, 4:8, 3:5] = quad
     A[:, 0:4, 2:3] = I[:, :, 0:1]
     A[:, 4:8, 6:8] = -quad * dst[:, :, 1:2]
     B = dst.transpose(0, 2, 1).reshape(-1, 8, 1)
     M = F.concat([F.matmul(F.matinv(A), B)[:, :, 0], I[:, 0:1, 0]],
                  axis=1).reshape(-1, 3, 3)
     new_data = F.warp_perspective(data, M, (48, 160))  # (N, 3, 48, 160)
     return {"data": new_data}
Ejemplo n.º 17
0
 def forward(self, data, idx, roi):
     N, H, W, C = data.shape
     xmax = roi[:, 1, 0]
     xmin = roi[:, 0, 0]
     ymax = roi[:, 1, 1]
     ymin = roi[:, 0, 1]
     scale = F.maximum((xmax - xmin) / W, (ymax - ymin) / H)
     I = F.broadcast_to(self.I, (N, ))
     M = F.broadcast_to(self.M, (N, 3, 3))
     M[:, 0, 0] = scale
     M[:, 0, 2] = xmin
     M[:, 1, 1] = scale
     M[:, 1, 2] = ymin
     M[:, 2, 2] = I
     resized = (F.warp_perspective(data,
                                   M, (H, W),
                                   mat_idx=idx,
                                   border_mode="CONSTANT",
                                   format="NHWC").transpose(
                                       0, 3, 1, 2).astype(np.float32))
     return resized
Ejemplo n.º 18
0
    def refinement_module(self, prob, fc2):
        
        m = prob.reshape(-1, 5*self.n)
        offsets, scores = m[:, :-self.n], m[:, -self.n:]
        n = offsets.shape[0]
        offsets = offsets.reshape(-1, self.n, 4)
        cls_scores = F.expand_dims(F.softmax(scores, axis=1), axis=2)
        pred_boxes = F.concat([offsets, cls_scores], axis=2)[:, 1]
        n, c = pred_boxes.shape
        pred_boxes = F.broadcast_to(F.expand_dims(pred_boxes, axis=1), (n, 6, c)).reshape(n,-1)

        n, c = fc2.shape
        fc3 = F.broadcast_to(F.expand_dims(fc2, axis=1), (n, 2, c)).reshape(-1, c)
        fc3 = F.concat([fc3, pred_boxes], axis=1)
        fc3 = self.relu(self.fc3(fc3))
        fc3 = fc3.reshape(n, 2, -1).transpose(1, 0, 2)

        a = self.q(fc3[0])
        b = self.r(fc3[1])
        prob = F.stack([a, b], axis=1).reshape(-1, 10*self.n)
        return prob
Ejemplo n.º 19
0
def test_broadcast():
    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

    input2_shape = (10, 1)
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

    def compare_fn(x, y):
        assert x.shape[0] == y

    cases = [
        {
            "input": [data1, output1_shape],
            "output": output1_shape
        },
        {
            "input": [data2, output2_shape],
            "output": output2_shape
        },
    ]
    opr_test(cases, F.broadcast_to, compare_fn=compare_fn)

    x = F.ones((2, 1, 3))
    with pytest.raises(RuntimeError):
        F.broadcast_to(x, (2, 3, 4))

    with pytest.raises(RuntimeError):
        F.broadcast_to(x, (4, 1, 3))

    with pytest.raises(RuntimeError):
        F.broadcast_to(x, (1, 3))
Ejemplo n.º 20
0
 def generate_anchors_by_features(self, sizes, device):
     all_anchors = []
     assert len(sizes) == self.num_features, (
         "input features expected {}, got {}".format(self.num_features, len(sizes))
     )
     for size, stride in zip(sizes, self.strides):
         grid_x, grid_y = create_anchor_grid(size, self.offset, stride, device)
         grids = F.stack([grid_x, grid_y], axis=1)
         all_anchors.append(
             F.broadcast_to(
                 F.expand_dims(grids, axis=1), (grids.shape[0], self.num_anchors, 2)
             ).reshape(-1, 2)
         )  # FIXME: need F.repeat
     return all_anchors
Ejemplo n.º 21
0
    def forward(self, fpn_fms, rcnn_rois, im_info=None, gt_boxes=None):
        rcnn_rois, labels, bbox_targets = self.get_ground_truth(
            rcnn_rois, im_info, gt_boxes)

        fpn_fms = [fpn_fms[x] for x in self.in_features]
        pool_features = layers.roi_pool(
            fpn_fms,
            rcnn_rois,
            self.stride,
            self.pooling_size,
            self.pooling_method,
        )
        flatten_feature = F.flatten(pool_features, start_axis=1)
        roi_feature = F.relu(self.fc1(flatten_feature))
        roi_feature = F.relu(self.fc2(roi_feature))
        pred_logits = self.pred_cls(roi_feature)
        pred_offsets = self.pred_delta(roi_feature)

        if self.training:
            # loss for rcnn classification
            loss_rcnn_cls = F.loss.cross_entropy(pred_logits, labels, axis=1)
            # loss for rcnn regression
            pred_offsets = pred_offsets.reshape(-1, self.cfg.num_classes, 4)
            num_samples = labels.shape[0]
            fg_mask = labels > 0
            loss_rcnn_bbox = layers.smooth_l1_loss(
                pred_offsets[fg_mask, labels[fg_mask] - 1],
                bbox_targets[fg_mask],
                self.cfg.rcnn_smooth_l1_beta,
            ).sum() / F.maximum(num_samples, 1)

            loss_dict = {
                "loss_rcnn_cls": loss_rcnn_cls,
                "loss_rcnn_bbox": loss_rcnn_bbox,
            }
            return loss_dict
        else:
            # slice 1 for removing background
            pred_scores = F.softmax(pred_logits, axis=1)[:, 1:]
            pred_offsets = pred_offsets.reshape(-1, 4)
            target_shape = (rcnn_rois.shape[0], self.cfg.num_classes, 4)
            # rois (N, 4) -> (N, 1, 4) -> (N, 80, 4) -> (N * 80, 4)
            base_rois = F.broadcast_to(
                F.expand_dims(rcnn_rois[:, 1:5], axis=1),
                target_shape).reshape(-1, 4)
            pred_bbox = self.box_coder.decode(base_rois, pred_offsets)
            return pred_bbox, pred_scores
Ejemplo n.º 22
0
    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.shape[1]

        if token_type_ids is None:
            token_type_ids = F.zeros_like(input_ids)

        position_ids = F.linspace(0, seq_length - 1, seq_length).astype(np.int32)
        position_ids = F.broadcast_to(F.expand_dims(position_ids, 0), input_ids.shape)
        words_embeddings = self.word_embeddings(input_ids)

        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings
Ejemplo n.º 23
0
def restore_bbox(rois, deltas, unnormalize=True, config=None):

    assert deltas.ndim == 3
    if unnormalize:
        std_opr = mge.tensor(config.bbox_normalize_stds.reshape(1, 1, -1))
        mean_opr = mge.tensor(config.bbox_normalize_means.reshape(1, 1, -1))
        deltas = deltas * std_opr
        deltas = deltas + mean_opr

    # n = deltas.shape[1]
    n, c = deltas.shape[0], deltas.shape[1]
    all_rois = F.broadcast_to(F.expand_dims(rois, 1),
                              (n, c, rois.shape[1])).reshape(
                                  -1, rois.shape[1])
    deltas = deltas.reshape(-1, deltas.shape[2])
    pred_bbox = bbox_transform_inv_opr(all_rois, deltas)
    pred_bbox = pred_bbox.reshape(-1, c, pred_bbox.shape[1])
    return pred_bbox
Ejemplo n.º 24
0
    def forward(self, fpn_fms, rcnn_rois, labels=None, bbox_targets=None):
        # stride: 64,32,16,8,4 -> 4, 8, 16, 32
        fpn_fms = fpn_fms[1:]
        fpn_fms.reverse()
        stride = [4, 8, 16, 32]
        poo5, rcnn_rois, labels, bbox_targets = roi_pool(
                fpn_fms, rcnn_rois, stride, (7, 7), 'roi_align',
                labels, bbox_targets)
        poo5 = F.flatten(poo5, start_axis=1)
        fc1 = F.relu(self.fc1(poo5))
        fc2 = F.relu(self.fc2(fc1))

        cls_scores = self.cls(fc2)
        pred_boxes = self.bbox(fc2)
        # a = self.a(fc2)
        # b = self.b(fc2)
        # prob = F.stack([a, b], axis=1).reshape(-1, a.shape[1])
        prob = F.concat([pred_boxes, cls_scores], axis=1)
        if self.training:
           
            # emd_loss = self.compute_gemini_loss(prob, bbox_targets, labels)
            bbox_targets, labels = bbox_targets.reshape(-1, 4), labels.flatten()
            cls_loss = softmax_loss(cls_scores, labels)

            pred_boxes = pred_boxes.reshape(-1, self.n, 4)
            bbox_loss = smooth_l1_loss_rcnn(pred_boxes, bbox_targets, labels,   \
                config.rcnn_smooth_l1_beta)

            loss_dict = {}
            loss_dict['cls_loss'] = cls_loss
            loss_dict['bbox_loss'] =  bbox_loss
            return loss_dict
        else:

            offsets, cls_scores = prob[:, :-self.n], prob[:, -self.n:]
            pred_bbox = offsets.reshape(-1, self.n, 4)
            cls_prob = F.softmax(cls_scores, axis=1)
            n = rcnn_rois.shape[0]
            rois = F.broadcast_to(F.expand_dims(rcnn_rois[:, 1:5], axis=1), (n, 1, 4)).reshape(-1, 4)
            normalized = config.rcnn_bbox_normalize_targets
            pred_boxes = restore_bbox(rois, pred_bbox, normalized, config)
            pred_bbox = F.concat([pred_boxes, F.expand_dims(cls_prob, axis=2)], axis=2)
            return pred_bbox
Ejemplo n.º 25
0
def smooth_l1_loss_rcnn_opr(pred,
                            gt,
                            label,
                            sigma=1,
                            background=0,
                            ignore_label=-1):
    """
        pred    : (minibatch, class_num, 4)
        gt      : (minibatch, 4)
        label   : (minibatch,  )
    """
    broadcast_label = F.broadcast_to(label.reshape(-1, 1), (1, pred.shape[-1]))
    broadcast_mask, broadcast_mask_ig = _get_mask_of_label(
        broadcast_label, background, ignore_label)
    vlabel = broadcast_label * broadcast_mask
    pred_corr = F.nn.indexing_one_hot(pred, vlabel.astype(np.int32), 1)
    value = _smooth_l1_base(pred_corr, gt, sigma)
    loss = (value * broadcast_mask).sum(dim=1)
    return loss
Ejemplo n.º 26
0
    def _recover_dtboxes(self, anchors_list, rpn_cls_list, rpn_bbox_list,
                         rpn_iou_list):

        assert rpn_cls_list[0].shape[0] == 1
        all_anchors = F.concat(anchors_list, axis=0)
        rpn_cls_scores_final = F.concat(rpn_cls_list, axis=1)[0]
        rpn_bbox_offsets_final = F.concat(rpn_bbox_list, axis=1)[0]
        rpn_iou_prob_final = F.concat(rpn_iou_list, axis=1)[0]

        rpn_bbox_offsets = rpn_bbox_offsets_final.reshape(-1, 4)
        rpn_cls_scores = rpn_cls_scores_final.reshape(-1, 1)
        rpn_iou_prob = rpn_iou_prob_final.reshape(-1, 1)

        n, c = all_anchors.shape[0], all_anchors.shape[1]
        anchors = F.broadcast_to(F.expand_dims(all_anchors, 1),
                                 (n, 1, c)).reshape(-1, c)
        rpn_bbox = bbox_transform_inv_opr(anchors, rpn_bbox_offsets)
        pred_boxes = F.concat([rpn_bbox, rpn_cls_scores, rpn_iou_prob], axis=1)
        return pred_boxes
Ejemplo n.º 27
0
    def forward(self, fpn_fms, rcnn_rois, labels=None, bbox_targets=None):
        # stride: 64,32,16,8,4 -> 4, 8, 16, 32
        fpn_fms = fpn_fms[1:]
        fpn_fms.reverse()
        stride = [4, 8, 16, 32]
        poo5, rcnn_rois, labels, bbox_targets = roi_pool(
            fpn_fms, rcnn_rois, stride, (7, 7), 'roi_align', labels,
            bbox_targets)
        poo5 = F.flatten(poo5, start_axis=1)
        fc1 = F.relu(self.fc1(poo5))
        fc2 = F.relu(self.fc2(fc1))

        a = self.a(fc2)
        b = self.b(fc2)
        prob = F.stack([a, b], axis=1).reshape(-1, a.shape[1])

        if self.refinement:
            final_prob = self.refinement_module(prob, fc2)

        if self.training:

            emd_loss = self.compute_gemini_loss(prob, bbox_targets, labels)
            loss_dict = {}
            loss_dict['loss_rcnn_emd'] = emd_loss
            if self.refinement_module:
                final_emd_loss = self.compute_gemini_loss(
                    final_prob, bbox_targets, labels)
                loss_dict['final_rcnn_emd'] = final_emd_loss
            return loss_dict
        else:

            offsets, cls_scores = prob[:, :-self.n], prob[:, -self.n:]
            pred_bbox = offsets.reshape(-1, self.n, 4)
            cls_prob = F.softmax(cls_scores, axis=1)
            n = rcnn_rois.shape[0]
            rois = F.broadcast_to(F.expand_dims(rcnn_rois[:, 1:5], axis=1),
                                  (n, 2, 4)).reshape(-1, 4)
            normalized = config.rcnn_bbox_normalize_targets
            pred_boxes = restore_bbox(rois, pred_bbox, normalized, config)
            pred_bbox = F.concat(
                [pred_boxes, F.expand_dims(cls_prob, axis=2)], axis=2)
            return pred_bbox
Ejemplo n.º 28
0
 def forward(self, now_LR, pre_h_SD):
     """
     now_LR: B,3,H,W
     pre_h_SD: B,48,H,W
     """
     batch, C, H, W = pre_h_SD.shape
     kernels = self.conv(now_LR)  # [B, k*k, H, W]
     batchwise_ans = []
     for idx in range(batch):
         kernel = kernels[idx]  # [k*k, H, W]
         kernel = F.dimshuffle(kernel, (1, 2, 0))  # [H, W , k*k]
         kernel = F.reshape(kernel, (H, W, 1, self.K, self.K, 1))
         kernel = F.broadcast_to(kernel, (C, H, W, 1, self.K, self.K, 1))
         batchwise_ans.append(
             F.local_conv2d(
                 F.add_axis(pre_h_SD[idx], 0), kernel, [1, 1], [1, 1],
                 [1, 1]))  # [1, C, H, W]      some bug with padding
     similarity_matrix = F.concat(batchwise_ans, axis=0)  # [B,C,H,W]
     del batchwise_ans
     similarity_matrix = F.sigmoid(similarity_matrix)
     return F.multiply(pre_h_SD, similarity_matrix)
Ejemplo n.º 29
0
def test_broadcast(is_varnode):
    if is_varnode:
        network = Network()
    else:
        network = None

    input1_shape = (20, 30)
    output1_shape = (30, 20, 30)
    data1 = np.random.random(input1_shape).astype(np.float32)

    input2_shape = (10, 1)
    output2_shape = (20, 10, 20)
    data2 = np.random.random(input2_shape).astype(np.float32)

    input3_shape = (10, 10)
    output3_shape = (10, 10)
    data3 = np.random.random(input3_shape).astype(np.float32)

    def compare_fn(x, y):
        assert x._tuple_shape[0] == y

    cases = [
        {
            "input": [data1, output1_shape],
            "output": output1_shape
        },
        {
            "input": [data2, output2_shape],
            "output": output2_shape
        },
        {
            "input": [data3, output3_shape],
            "output": output3_shape
        },
    ]
    opr_test(cases, F.broadcast_to, compare_fn=compare_fn, network=network)

    x = F.ones((2, 1, 3))
    with pytest.raises(RuntimeError):
        F.broadcast_to(x, (2, 3, 4))

    with pytest.raises(RuntimeError):
        F.broadcast_to(x, (4, 1, 3))

    with pytest.raises(RuntimeError):
        F.broadcast_to(x, (1, 3))
Ejemplo n.º 30
0
    def forward(self, now_LR, pre_h_SD):
        """
            now_LR: B,3,H,W
            pre_h_SD: B,64,H,W
        """
        pad = self.K // 2
        batch, C, H, W = pre_h_SD.shape
        kernels = self.conv(now_LR)  # [B, k*k, H, W]
        # 对 pre_h_SD进行padding
        similarity_matrix = F.zeros_like(pre_h_SD)
        pre_h_SD = add_H_W_Padding(pre_h_SD, margin=pad)
        for i in range(self.K):
            for j in range(self.K):
                # 做点乘
                kernel = kernels[:, i * self.K + j, :, :]  # [B, H, W]
                kernel = F.add_axis(kernel, axis=1)  # [B, 1 ,H, W]
                kernel = F.broadcast_to(kernel, [batch, C, H, W])
                corr = kernel * pre_h_SD[:, :, i:(H + i), j:(W + j)]
                similarity_matrix = similarity_matrix + corr  # [B, C, H, W]

        similarity_matrix = F.sigmoid(similarity_matrix)
        return F.multiply(pre_h_SD[:, :, pad:(H + pad), pad:(W + pad)],
                          similarity_matrix)