def test_lbp_values(): image = Image([[0.0, 6.0, 0.0], [5.0, 18.0, 13.0], [0.0, 20.0, 0.0]]) lbp_img = lbp(image, radius=1, samples=4, mapping_type="none", padding=False) assert_allclose(lbp_img.pixels, 8.0) image = Image([[0.0, 6.0, 0.0], [5.0, 25.0, 13.0], [0.0, 20.0, 0.0]]) lbp_img = lbp(image, radius=1, samples=4, mapping_type="riu2", padding=False) assert_allclose(lbp_img.pixels, 0.0) image = Image([[0.0, 6.0, 0.0], [5.0, 13.0, 13.0], [0.0, 20.0, 0.0]]) lbp_img = lbp(image, radius=1, samples=4, mapping_type="u2", padding=False) assert_allclose(lbp_img.pixels, 8.0) image = Image([[0.0, 6.0, 0.0], [5.0, 6.0, 13.0], [0.0, 20.0, 0.0]]) lbp_img = lbp(image, radius=1, samples=4, mapping_type="ri", padding=False) assert_allclose(lbp_img.pixels, 4.0)
def test_lbp_values(): image = Image([[0., 6., 0.], [5., 18., 13.], [0., 20., 0.]]) lbp_img = lbp(image, radius=1, samples=4, mapping_type='none', padding=False) assert_allclose(lbp_img.pixels, 8.) image = Image([[0., 6., 0.], [5., 25., 13.], [0., 20., 0.]]) lbp_img = lbp(image, radius=1, samples=4, mapping_type='riu2', padding=False) assert_allclose(lbp_img.pixels, 0.) image = Image([[0., 6., 0.], [5., 13., 13.], [0., 20., 0.]]) lbp_img = lbp(image, radius=1, samples=4, mapping_type='u2', padding=False) assert_allclose(lbp_img.pixels, 8.) image = Image([[0., 6., 0.], [5., 6., 13.], [0., 20., 0.]]) lbp_img = lbp(image, radius=1, samples=4, mapping_type='ri', padding=False) assert_allclose(lbp_img.pixels, 4.)
def test_windowiterator_lbp_no_padding(): n_cases = 5 image_width = np.random.randint(50, 250, [n_cases, 1]) image_height = np.random.randint(50, 250, [n_cases, 1]) window_step_horizontal = np.random.randint(1, 10, [n_cases, 1]) window_step_vertical = np.random.randint(1, 10, [n_cases, 1]) radius = np.random.randint(3, 5, [n_cases, 1]) for i in range(n_cases): image = Image(np.random.randn(1, image_height[i, 0], image_width[i, 0])) lbp_img = lbp(image, radius=radius[i, 0], samples=8, window_step_vertical=window_step_vertical[i, 0], window_step_horizontal=window_step_horizontal[i, 0], window_step_unit='pixels', padding=False) window_size = 2 * radius[i, 0] + 1 n_windows_horizontal = len( range(window_size - 1, image_width[i, 0], window_step_horizontal[i, 0])) n_windows_vertical = len( range(window_size - 1, image_height[i, 0], window_step_vertical[i, 0])) assert_allclose(lbp_img.shape, (n_windows_vertical, n_windows_horizontal))
def test_lbp_channels(): n_cases = 3 n_combs = np.random.randint(1, 6, [n_cases, 1]) channels = np.random.randint(1, 4, [n_cases, 1]) for i in range(n_cases): radius = random.sample(range(1, 10), n_combs[i, 0]) samples = random.sample(range(4, 12), n_combs[i, 0]) image = MaskedImage(np.random.randn(channels[i, 0], 40, 40)) lbp_img = lbp(image, radius=radius, samples=samples, window_step_vertical=3, window_step_horizontal=3, window_step_unit='pixels', padding=True) assert_allclose(lbp_img.n_channels, n_combs[i, 0] * channels[i, 0])
def test_windowiterator_lbp_padding(): n_cases = 5 image_width = np.random.randint(50, 250, [n_cases, 1]) image_height = np.random.randint(50, 250, [n_cases, 1]) window_step_horizontal = np.random.randint(1, 10, [n_cases, 1]) window_step_vertical = np.random.randint(1, 10, [n_cases, 1]) for i in range(n_cases): image = MaskedImage(np.random.randn(1, image_height[i, 0], image_width[i, 0])) lbp_img = lbp(image, window_step_vertical=window_step_vertical[i, 0], window_step_horizontal=window_step_horizontal[i, 0], window_step_unit='pixels', padding=True) n_windows_horizontal = len(range(0, image_width[i, 0], window_step_horizontal[i, 0])) n_windows_vertical = len(range(0, image_height[i, 0], window_step_vertical[i, 0])) assert_allclose(lbp_img.shape, (n_windows_vertical, n_windows_horizontal))
def test_windowiterator_lbp_no_padding(): n_cases = 5 image_width = np.random.randint(50, 250, [n_cases, 1]) image_height = np.random.randint(50, 250, [n_cases, 1]) window_step_horizontal = np.random.randint(1, 10, [n_cases, 1]) window_step_vertical = np.random.randint(1, 10, [n_cases, 1]) radius = np.random.randint(3, 5, [n_cases, 1]) for i in range(n_cases): image = Image(np.random.randn(1, image_height[i, 0], image_width[i, 0])) lbp_img = lbp(image, radius=radius[i, 0], samples=8, window_step_vertical=window_step_vertical[i, 0], window_step_horizontal=window_step_horizontal[i, 0], window_step_unit='pixels', padding=False) window_size = 2 * radius[i, 0] + 1 n_windows_horizontal = len(range(window_size - 1, image_width[i, 0], window_step_horizontal[i, 0])) n_windows_vertical = len(range(window_size - 1, image_height[i, 0], window_step_vertical[i, 0])) assert_allclose(lbp_img.shape, (n_windows_vertical, n_windows_horizontal))