def increment(self, samples, n_samples=None, forgetting_factor=1.0, verbose=False): r""" Update the eigenvectors, eigenvalues and mean vector of this model by performing incremental PCA on the given samples. Parameters ---------- samples : `list` of :map:`Vectorizable` List of new samples to update the model from. n_samples : `int`, optional If provided then ``samples`` must be an iterator that yields ``n_samples``. If not provided then samples has to be a list (so we know how large the data matrix needs to be). forgetting_factor : ``[0.0, 1.0]`` `float`, optional Forgetting factor that weights the relative contribution of new samples vs old samples. If 1.0, all samples are weighted equally and, hence, the results is the exact same as performing batch PCA on the concatenated list of old and new simples. If <1.0, more emphasis is put on the new samples. See [1] for details. References ---------- .. [1] David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang. "Incremental Learning for Robust Visual Tracking". IJCV, 2007. """ # build a data matrix from the new samples data = as_matrix(samples, length=n_samples, verbose=verbose) # (n_samples, n_features) n_new_samples = data.shape[0] # compute incremental pca e_vectors, e_values, m_vector = ipca(data, self._components, self._eigenvalues, self.n_samples, m_a=self.mean_vector, f=forgetting_factor) # if the number of active components is the same as the total number # of components so it will be after this method is executed reset = (self.n_active_components == self.n_components) # update mean, components, eigenvalues and number of samples self.mean_vector = m_vector self._components = e_vectors self._eigenvalues = e_values self.n_samples += n_new_samples # reset the number of active components to the total number of # components if reset: self.n_active_components = self.n_components
def ipca_samples_nocentre_test(): n_a = large_samples_data_matrix.shape[0] / 2 A = large_samples_data_matrix[:n_a, :] U_a, l_a, m_a = pca(A, centre=False) B = large_samples_data_matrix[n_a:, :] i_U, i_l, i_m = ipca(B, U_a, l_a, n_a, m_a=m_a) b_U, b_l, b_m = pca(large_samples_data_matrix, centre=False) assert_almost_equal(np.abs(i_U), np.abs(b_U)) assert_almost_equal(i_l, b_l) assert_almost_equal(i_m, b_m)
def increment(self, samples, n_samples=None, forgetting_factor=1.0, verbose=False): r""" Update the eigenvectors, eigenvalues and mean vector of this model by performing incremental PCA on the given samples. Parameters ---------- samples : `list` of :map:`Vectorizable` List of new samples to update the model from. n_samples : `int`, optional If provided then ``samples`` must be an iterator that yields ``n_samples``. If not provided then samples has to be a list (so we know how large the data matrix needs to be). forgetting_factor : ``[0.0, 1.0]`` `float`, optional Forgetting factor that weights the relative contribution of new samples vs old samples. If 1.0, all samples are weighted equally and, hence, the results is the exact same as performing batch PCA on the concatenated list of old and new simples. If <1.0, more emphasis is put on the new samples. See [1] for details. References ---------- .. [1] David Ross, Jongwoo Lim, Ruei-Sung Lin, Ming-Hsuan Yang. "Incremental Learning for Robust Visual Tracking". IJCV, 2007. """ # build a data matrix from the new samples data = as_matrix(samples, length=n_samples, verbose=verbose) # (n_samples, n_features) n_new_samples = data.shape[0] # compute incremental pca e_vectors, e_values, m_vector = ipca( data, self._components, self._eigenvalues, self.n_samples, m_a=self.mean_vector, f=forgetting_factor) # if the number of active components is the same as the total number # of components so it will be after this method is executed reset = (self.n_active_components == self.n_components) # update mean, components, eigenvalues and number of samples self.mean_vector = m_vector self._components = e_vectors self._eigenvalues = e_values self.n_samples += n_new_samples # reset the number of active components to the total number of # components if reset: self.n_active_components = self.n_components
def ipca_features_nocentre_test(): C = np.vstack((large_samples_data_matrix.T, large_samples_data_matrix.T)) n_a = C.shape[0] / 2 A = C[:n_a, :] U_a, l_a, m_a = pca(A, centre=False) B = C[n_a:, :] i_U, i_l, i_m = ipca(B, U_a, l_a, n_a, m_a=m_a) b_U, b_l, b_m = pca(C, centre=False) assert_almost_equal(np.abs(i_U), np.abs(b_U)) assert_almost_equal(i_l, b_l) assert_almost_equal(i_m, b_m)