Ejemplo n.º 1
0
def sample_categorical(x, dim=None):
    dim = x.shape[-1] if dim is None else dim

    cdf = mtf.cumsum(x, dim)
    rand_uniform = mtf.random_uniform(x.mesh, x.shape - dim, minval=0, maxval=1)
    mask = mtf.cast(mtf.greater(cdf, rand_uniform), tf.int32)
    return mtf.argmax(mask, dim)
Ejemplo n.º 2
0
def model_fn(features, labels, mode, params):
    # Get global step
    global_step = tf.train.get_global_step()

    # Construct mtf graph + mesh from params
    graph = mtf.Graph()
    mesh_shape = mtf.convert_to_shape(params["mesh_shape"])
    layout_rules = mtf.convert_to_layout_rules(params["layout"])

    # Mesh setup
    if params["use_tpu"]:
        var_placer, mesh_impl = simd_mesh_setup(params, mesh_shape,
                                                layout_rules)
    else:
        var_placer = None
        gpu_ids = params["gpu_ids"]
        mesh_impl = mtf.placement_mesh_impl.PlacementMeshImpl(
            mesh_shape, layout_rules, gpu_ids)

    # Trainable variable precision
    # Store to checkpoints in master type, train in slice type, compute in activation type
    if params["precision"] == "bfloat16":
        variable_dtype = mtf.VariableDType(master_dtype=tf.bfloat16,
                                           slice_dtype=tf.float32,
                                           activation_dtype=tf.bfloat16)
    else:
        variable_dtype = mtf.VariableDType(master_dtype=tf.float32,
                                           slice_dtype=tf.float32,
                                           activation_dtype=tf.float32)

    # Build mtf mesh object
    mesh = mtf.Mesh(graph, "my_mesh", var_placer)

    # Build mtf_features & seq length dict for getting number of microbatches
    # We need to pack inputs into a dict to pass into serialize_training_step
    features_dict = {"inputs": features, "labels": labels}
    sequence_length_dict = {
        "inputs": params["n_ctx"],
        "labels": params["n_ctx"]
    }

    params = add_mode_to_params(params, mode)
    batch_size = get_batch_size(params)

    batch_dim = mtf.Dimension("batch", batch_size)
    batch_dims = [batch_dim]
    feature_length = sequence_length_dict["inputs"]
    length_dim = mtf.Dimension("sequence", feature_length)

    mtf_features = {}
    for key, x in features_dict.items():
        if x is not None:
            feature_shape = mtf.Shape(batch_dims + [length_dim])
            if type(features_dict[key]) == dict:
                features_dict[key] = features_dict[key]["feature"]
            x = tf.cast(features_dict[key], tf.int32)
            x = tf.reshape(x, feature_shape.to_integer_list)
            mtf_features[key] = mtf.import_fully_replicated(mesh,
                                                            x,
                                                            feature_shape,
                                                            name=key)

    # Instantiate dict for dimensions, bias, etc that can be calculated here once then passed into model
    other_features = {}
    memory_length_dim = mtf.Dimension("memory_length", length_dim.size)

    attn_bias = biasmask_attn_weights(
        mesh, length_dim, memory_length_dim,
        variable_dtype) if params["causal"] else None

    # Add attn_bias into mtf_features
    other_features["attn_bias"] = attn_bias

    # Define other Dimensions that we'll need inside the model
    embd_dim = mtf.Dimension("embd", params["n_embd"])
    vocab_dim = mtf.Dimension("vocab", params["n_vocab"])
    # We need this because gathering when both the args have the same dimension in them breaks things
    # This dim is specifically for the weights
    # This prevents the "Einsum has lhs dimension without corresponding rhs or output dimension." error
    embed_sequence_dim = mtf.Dimension("embed_sequence", params["n_ctx"])

    other_features["embd_dim"] = embd_dim
    other_features["vocab_dim"] = vocab_dim
    other_features["embed_sequence_dim"] = embed_sequence_dim
    other_features["memory_length_dim"] = memory_length_dim

    if mode == tf.estimator.ModeKeys.PREDICT:
        # Set up the model for prediction
        inputs = mtf_features["inputs"]
        if params["remove_partial_sequences"] is None:
            params["remove_partial_sequences"] = False

        export = params.get("export", False)

        if not export:
            mtf_samples = sample_autoregressive(
                inputs,
                other_features=other_features,
                params=params,
                variable_dtype=variable_dtype,
                remove_partial_sequences=params["remove_partial_sequences"],
                stop_at_token=params["eos_id"],
                sampling_use_entmax=params['sampling_use_entmax'])

        else:
            with mtf.utils.outside_all_rewrites():
                with tf.variable_scope('gpt2'):
                    mtf_samples, loss, loss_batch = gpt2.model(
                        mtf_features,
                        other_features,
                        params,
                        mesh,
                        variable_dtype=variable_dtype,
                        context=None)

        mtf_samples = mtf.anonymize(mtf_samples)
        inputs = mtf.anonymize(inputs)
        lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=True)
        inputs = lowering.export_to_tf_tensor(inputs)
        outputs = lowering.export_to_tf_tensor(mtf_samples)
        predictions = {"inputs": inputs, "outputs": outputs}

        def scaffold_fn():
            return tf.train.Scaffold(
                local_init_op=tf.group(
                    tf.train.Scaffold.default_local_init_op(),
                    lowering.copy_masters_to_slices(),
                    name="mtf_local_init_op"),
                ready_op=tf.concat([
                    tf.report_uninitialized_variables(),
                    resources.report_uninitialized_resources()
                ],
                                   axis=0,
                                   name="mtf_ready_op"))

        return tpu_estimator.TPUEstimatorSpec(
            mode=tf.estimator.ModeKeys.PREDICT,
            predictions=predictions,
            scaffold_fn=scaffold_fn,
            prediction_hooks=[mtf.MtfRestoreHook(lowering)])

    # We're not predicting, so we better be training or evaluating
    assert (mode == tf.estimator.ModeKeys.TRAIN
            or mode == tf.estimator.ModeKeys.EVAL)

    if mode == tf.estimator.ModeKeys.TRAIN:
        # Gets number of microbatches per batch for serialized training
        # if param tokens_per_mb_per_replica = None, this defaults to 1 and no microbatching is performed
        num_microbatches = int(
            mtf_transformer.utils.serialize_num_microbatches(
                batch_dim=batch_dim,
                sequence_length=sequence_length_dict,
                mesh_shape=mesh_shape,
                layout_rules=layout_rules,
                tokens_per_microbatch_per_replica=params[
                    "tokens_per_mb_per_replica"]))
    else:
        num_microbatches = 1

    params[
        "num_microbatches"] = num_microbatches  # Add num microbatches to params

    if num_microbatches > 1:

        # For serialize_training_step we need to modify the model to output results in a dict
        def serialized_fn(mtf_features):
            if params["model"] == "GPT":
                with tf.variable_scope('gpt2'):
                    logits, loss, loss_batch = gpt2.model(
                        mtf_features,
                        other_features,
                        params,
                        mesh,
                        variable_dtype=variable_dtype)
                return {
                    "logits": logits,
                    "loss": loss,
                    "loss_batch": loss_batch
                }
            else:
                raise Exception(
                    f"'{params['model']}' is not a valid model - please select from [GPT]"
                )

        # Serialize the training step - Gradients are accumulated locally and reduced once.
        var_grads, output_dict = mtf.serialize_training_step(
            mtf_features, serialized_fn, batch_dim, num_microbatches)
        loss = output_dict["loss"]
        loss_batch = output_dict["loss_batch"]
        logits = output_dict["logits"]
    else:
        # If we're not splitting into microbatches, return logits & loss as is
        if params["model"] == "GPT":
            with mtf.utils.outside_all_rewrites():
                with tf.variable_scope('gpt2'):
                    logits, loss, loss_batch = gpt2.model(
                        mtf_features,
                        other_features,
                        params,
                        mesh,
                        variable_dtype=variable_dtype,
                        context=None)
        else:
            raise Exception(
                f"'{params['model']}' is not a valid model - please select from [GPT]"
            )

    # Auto layout generation
    if params["auto_layout"]:
        auto_layout(graph, mesh_shape, logits, loss)
    if params["auto_layout_and_mesh_shape"]:
        auto_layout_and_mesh_shape(graph, params["num_cores"], logits, loss)

    if mode == tf.estimator.ModeKeys.TRAIN:
        # In TRAIN mode, get optimizer
        if params["num_microbatches"] > 1:
            # If we are splitting the batch into microbatches, var grads are created in the serialize_training_step fn
            # So we pass them in here
            _, update_ops, var_grads = get_optimizer(
                mesh,
                loss,
                params,
                variable_dtype=variable_dtype,
                inp_var_grads=var_grads)
        else:
            # Otherwise, they are created in the get_optimizer fn, so we leave inp_var_grads blank
            _, update_ops, var_grads = get_optimizer(
                mesh, loss, params, variable_dtype=variable_dtype)
        # Log summaries to tensorboard
        mtf.scalar_summary("loss", loss)
        # Log gradients if in params
        if params["log_grads"] not in [None, False]:
            for g in var_grads:
                grad_norm = mtf.sqrt(mtf.reduce_sum(mtf.square(g)))
                mtf.scalar_summary("grads/norm" + g.name[:-2], grad_norm)
    else:
        # For now, we can only export fully-replicated tensors.
        # This has to be done before lowering or they will not be included in the graph
        mean_logits = mtf.reduce_mean(logits, reduced_dim=vocab_dim)
        max_logits = mtf.argmax(logits, vocab_dim)
        del logits
        fully_replicated_mean_logits = mtf.anonymize(mean_logits)
        fully_replicated_max_logits = mtf.anonymize(max_logits)
        fully_replicated_loss_batch = mtf.anonymize(loss_batch)

    # Gets & prints info about no. trainable vars in the model & dimension names
    get_graph_info(graph)

    # 'lowers' mtf tensors into a tf graph - this enables us to export results as tf tensors
    lowering = mtf.Lowering(graph, {mesh: mesh_impl}, autostack=True)
    tf_loss = lowering.export_to_tf_tensor(loss)
    tf_loss = tf.cast(tf_loss, tf.float32)

    if mode == tf.estimator.ModeKeys.TRAIN:
        # Use our patched version until mtf updates theirs
        host_call = create_host_call(params['model_path'])
        mtf.utils.remove_summaries()

        # Creates train_op
        tf_update_ops = [lowering.lowered_operation(op) for op in update_ops]
        tf_update_ops.append(tf.assign_add(
            global_step, 1))  # Need to manually increment global_step
        tf.logging.info(f"tf_update_ops: {tf_update_ops}")
        train_op = tf.group(tf_update_ops)
    else:
        tf_mean_logits = lowering.export_to_tf_tensor(
            fully_replicated_mean_logits)
        tf_max_logits = lowering.export_to_tf_tensor(
            fully_replicated_max_logits)
        tf_loss_batch = tf.to_float(
            lowering.export_to_tf_tensor(fully_replicated_loss_batch))

    with mtf.utils.outside_all_rewrites():
        # Copy master variables to slices. Must be called first.
        restore_hook = mtf.MtfRestoreHook(lowering)
        if mode == tf.estimator.ModeKeys.TRAIN:
            # Set up the checkpoint server and return the TPUEstimatorSpec
            saver = tf.train.Saver(tf.global_variables(),
                                   sharded=True,
                                   max_to_keep=10,
                                   keep_checkpoint_every_n_hours=2,
                                   defer_build=False,
                                   save_relative_paths=True)
            tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
            saver_listener = mtf.MtfCheckpointSaverListener(lowering)
            saver_hook = tf.train.CheckpointSaverHook(
                params["model_path"],
                save_steps=params["steps_per_checkpoint"],
                saver=saver,
                listeners=[saver_listener])

            return tpu_estimator.TPUEstimatorSpec(
                tf.estimator.ModeKeys.TRAIN,
                loss=tf_loss,
                host_call=host_call,
                train_op=train_op,
                training_hooks=[restore_hook, saver_hook])

        elif mode == tf.estimator.ModeKeys.EVAL:
            # Evaluation metrics
            def _perplexity(loss):
                perplexity = tf.exp(loss)
                return tf.metrics.mean(perplexity)

            def _bits_per_byte(loss):
                bpb = loss * (0.29335 / math.log(2))
                return tf.metrics.mean(bpb)

            def _metric_fn(tf_mean_logits, tf_loss_batch):
                mean_logits = tf.metrics.mean(tf_mean_logits)
                loss = tf.reduce_mean(tf_loss_batch)
                perp = _perplexity(loss)
                bpb = _bits_per_byte(loss)
                return {
                    "mean_logits": mean_logits,
                    "perplexity": perp,
                    "bits per byte": bpb
                }

            def _lambada_metric_fn(labels, tf_max_logits, tf_loss_batch):
                eos_token = params["eos_id"]
                answer_positions = tf.where(
                    tf.math.not_equal(labels, eos_token))

                correct_answers = tf.gather_nd(
                    tf.math.equal(tf_max_logits, labels), answer_positions)
                accuracy = tf.metrics.mean(tf.cast(correct_answers,
                                                   tf.float32))

                # I guess tf_loss_batch has z_loss and maybe other stuff added to it
                # so maybe this should be calculated separately in the future
                answer_loss = tf.gather_nd(tf_loss_batch, answer_positions)
                log_perplexity = tf.metrics.mean(answer_loss)

                return {
                    "lambada_acc": accuracy,
                    "lambada_log_ppl": log_perplexity
                }

            eval_task = params["eval_task"]
            if eval_task == "lambada":
                eval_metrics = (_lambada_metric_fn,
                                [labels, tf_max_logits, tf_loss_batch])
            else:
                eval_metrics = (_metric_fn, [tf_mean_logits, tf_loss_batch])

            return tpu_estimator.TPUEstimatorSpec(
                tf.estimator.ModeKeys.EVAL,
                evaluation_hooks=[restore_hook],
                loss=tf_loss,
                eval_metrics=eval_metrics)
Ejemplo n.º 3
0
def unet_with_spatial_partition(mesh, mesh_impl, dataset_str, images, labels):
    """Builds the UNet model graph, train op and eval metrics.

  Args:
    mesh: a MeshTensorflow.mesh object.
    mesh_impl: a mesh implementation, such as SimdMeshImpl and
      PlacementMeshImpl.
    dataset_str: a string of either train or eval. This is used for batch_norm.
    images: a laid out Tensor with shape [batch, x, y, num_channels]
      or [batch, x, y, z, num_channels].
    labels: a laid out Tensor with shape [batch, x, y, num_classes]
      or [batch, x, y, z, num_classes].

  Returns:
    Prediction and loss.
  """

    is_training = (dataset_str == 'train')
    if dataset_str == 'train':
        batch_dim = mtf.Dimension('batch', FLAGS.batch_size_train)
    else:
        assert dataset_str == 'eval'
        batch_dim = mtf.Dimension('batch', FLAGS.batch_size_eval)
    image_nx_dim = mtf.Dimension('image_nx_block', FLAGS.image_nx_block)
    image_ny_dim = mtf.Dimension('image_ny_block', FLAGS.image_ny_block)
    image_sx_dim = mtf.Dimension('image_sx_block',
                                 FLAGS.ct_resolution // FLAGS.image_nx_block)
    image_sy_dim = mtf.Dimension('image_sy_block',
                                 FLAGS.ct_resolution // FLAGS.image_ny_block)
    image_sz_dim = mtf.Dimension('image_sz_block', FLAGS.ct_resolution)
    image_c_dim = mtf.Dimension('image_c', FLAGS.image_c)
    label_c_dim = mtf.Dimension('label_c', FLAGS.label_c)
    mtf_images_shape, mtf_labels_shape = get_input_mtf_shapes(dataset_str)

    mtf_dtype = tf.as_dtype(FLAGS.mtf_dtype)
    variable_dtype = mtf.VariableDType(mtf_dtype, mtf_dtype, mtf_dtype)

    # Import input features.
    x = mtf.import_laid_out_tensor(mesh, mesh_impl.LaidOutTensor(images),
                                   mtf_images_shape)
    x = mtf.cast(x, mtf_dtype)

    # Import ground truth labels.
    t = mtf.import_laid_out_tensor(mesh, mesh_impl.LaidOutTensor(labels),
                                   mtf_labels_shape)
    t = mtf.cast(t, mtf_dtype)

    # Transpose the blocks.
    if FLAGS.sampled_2d_slices:
        x = mtf.transpose(x, [
            batch_dim, image_nx_dim, image_ny_dim, image_sx_dim, image_sy_dim,
            image_c_dim
        ])

        t = mtf.transpose(t, [
            batch_dim, image_nx_dim, image_ny_dim, image_sx_dim, image_sy_dim,
            label_c_dim
        ])
    else:
        x = mtf.transpose(x, [
            batch_dim, image_nx_dim, image_ny_dim, image_sx_dim, image_sy_dim,
            image_sz_dim, image_c_dim
        ])

        t = mtf.transpose(t, [
            batch_dim, image_nx_dim, image_ny_dim, image_sx_dim, image_sy_dim,
            image_sz_dim, label_c_dim
        ])

    # Network.
    levels = []
    all_bn_update_ops = []
    # add levels with convolution or down-sampling
    for depth in range(FLAGS.network_depth):
        for n_conv in range(FLAGS.n_conv_per_block):
            if depth == 0 and n_conv == 0:
                # no dropout in 1st layer.
                dropout_keep_p = 1.0
            else:
                dropout_keep_p = FLAGS.dropout_keep_p
            x, bn_update_ops = conv_with_spatial_partition(
                x, FLAGS.sampled_2d_slices, image_nx_dim, image_ny_dim,
                FLAGS.n_base_filters * (2**depth), dropout_keep_p,
                FLAGS.with_batch_norm, is_training,
                'conv_{}_{}'.format(depth, n_conv), variable_dtype,
                'conv_down_{}_{}'.format(depth, n_conv))
            all_bn_update_ops.extend(bn_update_ops)
        levels.append(x)

        if depth < FLAGS.network_depth - 1:
            if FLAGS.sampled_2d_slices:
                x = mtf.layers.max_pool2d(x, ksize=(2, 2))
            else:
                x = mtf.layers.max_pool3d(x, ksize=(2, 2, 2))

    # add levels with up-convolution or up-sampling
    for depth in range(FLAGS.network_depth - 1)[::-1]:
        x = deconv_with_spatial_partition(
            x, FLAGS.sampled_2d_slices, image_nx_dim, image_ny_dim,
            FLAGS.n_base_filters * (2**depth), FLAGS.dropout_keep_p,
            'conv_{}_{}'.format(depth, FLAGS.n_conv_per_block - 1),
            variable_dtype, 'deconv_{}_0'.format(depth))
        x = mtf.concat([x, levels[depth]],
                       concat_dim_name='conv_{}_{}'.format(
                           depth, FLAGS.n_conv_per_block - 1))

        for n_conv in range(FLAGS.n_conv_per_block):
            x, bn_update_ops = conv_with_spatial_partition(
                x, FLAGS.sampled_2d_slices, image_nx_dim, image_ny_dim,
                FLAGS.n_base_filters * (2**depth), FLAGS.dropout_keep_p,
                FLAGS.with_batch_norm, is_training,
                'conv_{}_{}'.format(depth, n_conv), variable_dtype,
                'conv_up_{}_{}'.format(depth, n_conv))
            all_bn_update_ops.extend(bn_update_ops)

    # no dropout in the final layer.
    if FLAGS.sampled_2d_slices:
        y = mtf.layers.conv2d_with_blocks(
            x,
            mtf.Dimension('label_c', FLAGS.label_c),
            filter_size=(1, 1),
            strides=(1, 1),
            padding='SAME',
            h_blocks_dim=image_nx_dim,
            w_blocks_dim=image_ny_dim,
            variable_dtype=variable_dtype,
            name='final_conv_{}'.format(FLAGS.label_c),
        )
    else:
        y = mtf.layers.conv3d_with_blocks(
            x,
            mtf.Dimension('label_c', FLAGS.label_c),
            filter_size=(1, 1, 1),
            strides=(1, 1, 1),
            padding='SAME',
            d_blocks_dim=image_nx_dim,
            h_blocks_dim=image_ny_dim,
            variable_dtype=variable_dtype,
            name='final_conv_{}'.format(FLAGS.label_c),
        )

    # use mtf.constant to make sure there is no CPU-side constants.
    def scalar(v, dtype):
        return mtf.constant(mesh, v, shape=[], dtype=dtype)

    argmax_t = mtf.argmax(t, label_c_dim)
    liver_t = mtf.cast(mtf.equal(argmax_t, scalar(1, tf.int32)), mtf_dtype)
    lesion_t = mtf.cast(mtf.equal(argmax_t, scalar(2, tf.int32)), mtf_dtype)

    argmax_y = mtf.argmax(y, label_c_dim)
    lesion_y = mtf.cast(mtf.equal(argmax_y, scalar(2, tf.int32)), mtf_dtype)

    # summary of class ratios.
    lesion_pred_ratio = mtf.reduce_mean(lesion_y)
    lesion_label_ratio = mtf.reduce_mean(lesion_t)

    # summary of accuracy.
    accuracy = mtf.reduce_mean(
        mtf.cast(mtf.equal(argmax_y, argmax_t), mtf_dtype))

    # Cross-entropy loss. Up-weight the liver region.
    pixel_loss = mtf.layers.softmax_cross_entropy_with_logits(
        y, t, label_c_dim)
    pixel_weight = scalar(1, mtf_dtype) + \
        liver_t * scalar(FLAGS.xen_liver_weight - 1, mtf_dtype) + \
        lesion_t * scalar(FLAGS.xen_lesion_weight - FLAGS.xen_liver_weight,
                          mtf_dtype)
    loss_xen = mtf.reduce_mean(pixel_loss * pixel_weight)

    # Dice loss
    y_prob = mtf.softmax(y, reduced_dim=label_c_dim)
    lesion_prob = mtf.reduce_sum(mtf.slice(y_prob, 2, 1, 'label_c'),
                                 reduced_dim=mtf.Dimension('label_c', 1))
    prob_intersect = mtf.reduce_sum(lesion_prob * lesion_t,
                                    output_shape=mtf.Shape([batch_dim]))
    prob_area_sum = mtf.reduce_sum(lesion_prob + lesion_t,
                                   output_shape=mtf.Shape([batch_dim]))
    loss_dice_per_case = mtf.reduce_mean(
        scalar(-2, mtf_dtype) * prob_intersect /
        (prob_area_sum + scalar(FLAGS.dice_epsilon, mtf_dtype)))
    loss_dice_global = scalar(-2, mtf_dtype) * mtf.reduce_sum(
        prob_intersect) / (mtf.reduce_sum(prob_area_sum) +
                           scalar(FLAGS.dice_epsilon, mtf_dtype))

    loss_dice = (loss_dice_per_case + loss_dice_global) * scalar(
        0.5, mtf_dtype)

    loss = scalar(FLAGS.dice_loss_weight, mtf_dtype) * loss_dice + scalar(
        1 - FLAGS.dice_loss_weight, mtf_dtype) * loss_xen

    intersect = mtf.reduce_sum(lesion_y * lesion_t,
                               output_shape=mtf.Shape([batch_dim]))
    area_sum = mtf.reduce_sum(lesion_y + lesion_t,
                              output_shape=mtf.Shape([batch_dim]))
    # summary of dice.
    dice_per_case = mtf.reduce_mean(
        scalar(2, mtf_dtype) * intersect /
        (area_sum + scalar(0.000001, mtf_dtype)))
    dice_global = scalar(2, mtf_dtype) * mtf.reduce_sum(intersect) / (
        mtf.reduce_sum(area_sum) + scalar(0.000001, mtf_dtype))

    eval_metrics = {
        'lesion_pred_ratio': lesion_pred_ratio,
        'lesion_label_ratio': lesion_label_ratio,
        'accuracy_of_all_classes': accuracy,
        'lesion_dice_per_case': dice_per_case,
        'lesion_dice_global': dice_global,
        'loss_xen': loss_xen,
        'loss_dice': loss_dice,
        'loss_dice_per_case': loss_dice_per_case,
        'loss_dice_global': loss_dice_global,
    }

    if FLAGS.sampled_2d_slices:
        y_prob_downsampled = mtf.layers.avg_pool2d(
            y_prob, ksize=(FLAGS.pred_downsample, ) * 2)
        if FLAGS.output_ground_truth:
            lesion_gt_downsampled = mtf.layers.avg_pool2d(
                mtf.slice(t, 2, 1, 'label_c'),
                ksize=(FLAGS.pred_downsample, ) * 2)
    else:
        y_prob_downsampled = mtf.layers.avg_pool3d(
            y_prob, ksize=(FLAGS.pred_downsample, ) * 3)
        if FLAGS.output_ground_truth:
            lesion_gt_downsampled = mtf.layers.avg_pool3d(
                mtf.slice(t, 2, 1, 'label_c'),
                ksize=(FLAGS.pred_downsample, ) * 3)

    liver_prob_downsampled = mtf.slice(y_prob_downsampled, 1, 1, 'label_c')
    lesion_prob_downsampled = mtf.slice(y_prob_downsampled, 2, 1, 'label_c')
    preds = [
        mtf.reduce_sum(liver_prob_downsampled,
                       reduced_dim=mtf.Dimension('label_c', 1)),
        mtf.reduce_sum(lesion_prob_downsampled,
                       reduced_dim=mtf.Dimension('label_c', 1))
    ]

    if FLAGS.output_ground_truth:
        preds.append(
            mtf.reduce_sum(lesion_gt_downsampled,
                           reduced_dim=mtf.Dimension('label_c', 1)))

    preds.extend([intersect, area_sum])

    return preds, loss, eval_metrics, all_bn_update_ops