Ejemplo n.º 1
0
def main(curve_fn=starfish, visualize=True):
    import logging
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    import pyopencl as cl
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue, force_device_scalars=True)

    from meshmode.mesh.generation import make_curve_mesh
    mesh = make_curve_mesh(
            curve_fn,
            np.linspace(0, 1, nelements+1),
            target_order)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    pre_density_discr = Discretization(
            actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx = QBXLayerPotentialSource(
            pre_density_discr, 4*target_order, qbx_order,
            fmm_order=qbx_order+3,
            target_association_tolerance=0.005,
            #fmm_backend="fmmlib",
            )

    from pytential.target import PointsTarget
    fplot = FieldPlotter(np.zeros(2), extent=5, npoints=1000)
    targets_dev = actx.from_numpy(fplot.points)

    from pytential import GeometryCollection
    places = GeometryCollection({
        "qbx": qbx,
        "targets": PointsTarget(targets_dev),
        }, auto_where="qbx")

    density_discr = places.get_discretization("qbx")

    nodes = thaw(density_discr.nodes(), actx)
    angle = actx.np.arctan2(nodes[1], nodes[0])

    if k:
        kernel = HelmholtzKernel(2)
        kernel_kwargs = {"k": sym.var("k")}
    else:
        kernel = LaplaceKernel(2)
        kernel_kwargs = {}

    def op(**kwargs):
        kwargs.update(kernel_kwargs)

        #op = sym.d_dx(sym.S(kernel, sym.var("sigma"), **kwargs))
        return sym.D(kernel, sym.var("sigma"), **kwargs)
        #op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None, **kwargs)

    if 0:
        from random import randrange
        sigma = actx.zeros(density_discr.ndofs, angle.entry_dtype)
        for _ in range(5):
            sigma[randrange(len(sigma))] = 1

        from arraycontext import unflatten
        sigma = unflatten(angle, sigma, actx)
    else:
        sigma = actx.np.cos(mode_nr*angle)

    if isinstance(kernel, HelmholtzKernel):
        for i, elem in np.ndenumerate(sigma):
            sigma[i] = elem.astype(np.complex128)

    bound_bdry_op = bind(places, op())
    if visualize:
        fld_in_vol = actx.to_numpy(
                bind(places, op(
                    source="qbx",
                    target="targets",
                    qbx_forced_limit=None))(actx, sigma=sigma, k=k))

        if enable_mayavi:
            fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
        else:
            fplot.write_vtk_file("layerpot-potential.vts", [
                ("potential", fld_in_vol)
                ])

    if 0:
        apply_op = bound_bdry_op.scipy_op(actx, "sigma", np.float64, k=k)
        from sumpy.tools import build_matrix
        mat = build_matrix(apply_op)

        import matplotlib.pyplot as pt
        pt.imshow(mat)
        pt.colorbar()
        pt.show()

    if enable_mayavi:
        # {{{ plot boundary field

        from arraycontext import flatten
        fld_on_bdry = actx.to_numpy(
                flatten(bound_bdry_op(actx, sigma=sigma, k=k), actx))
        nodes_host = actx.to_numpy(
                flatten(density_discr.nodes(), actx)
                ).reshape(density_discr.ambient_dim, -1)

        mlab.points3d(nodes_host[0], nodes_host[1],
                fld_on_bdry.real, scale_factor=0.03)

        mlab.colorbar()
        mlab.show()
Ejemplo n.º 2
0
def main(mesh_name="ellipsoid"):
    import logging
    logger = logging.getLogger(__name__)
    logging.basicConfig(level=logging.WARNING)  # INFO for more progress info

    import pyopencl as cl
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue, force_device_scalars=True)

    if mesh_name == "ellipsoid":
        cad_file_name = "geometries/ellipsoid.step"
        h = 0.6
    elif mesh_name == "two-cylinders":
        cad_file_name = "geometries/two-cylinders-smooth.step"
        h = 0.4
    else:
        raise ValueError("unknown mesh name: %s" % mesh_name)

    from meshmode.mesh.io import generate_gmsh, FileSource
    mesh = generate_gmsh(
        FileSource(cad_file_name),
        2,
        order=2,
        other_options=["-string",
                       "Mesh.CharacteristicLengthMax = %g;" % h],
        target_unit="MM")

    from meshmode.mesh.processing import perform_flips
    # Flip elements--gmsh generates inside-out geometry.
    mesh = perform_flips(mesh, np.ones(mesh.nelements))

    from meshmode.mesh.processing import find_bounding_box
    bbox_min, bbox_max = find_bounding_box(mesh)
    bbox_center = 0.5 * (bbox_min + bbox_max)
    bbox_size = max(bbox_max - bbox_min) / 2

    logger.info("%d elements" % mesh.nelements)

    from pytential.qbx import QBXLayerPotentialSource
    from meshmode.discretization import Discretization
    from meshmode.discretization.poly_element import \
            InterpolatoryQuadratureSimplexGroupFactory

    density_discr = Discretization(
        actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order))

    qbx = QBXLayerPotentialSource(density_discr,
                                  4 * target_order,
                                  qbx_order,
                                  fmm_order=qbx_order + 3,
                                  target_association_tolerance=0.15)

    from pytential.target import PointsTarget
    fplot = FieldPlotter(bbox_center, extent=3.5 * bbox_size, npoints=150)

    from pytential import GeometryCollection
    places = GeometryCollection(
        {
            "qbx": qbx,
            "targets": PointsTarget(actx.from_numpy(fplot.points))
        },
        auto_where="qbx")
    density_discr = places.get_discretization("qbx")

    nodes = thaw(density_discr.nodes(), actx)
    angle = actx.np.arctan2(nodes[1], nodes[0])

    if k:
        kernel = HelmholtzKernel(3)
    else:
        kernel = LaplaceKernel(3)

    #op = sym.d_dx(sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None))
    op = sym.D(kernel, sym.var("sigma"), qbx_forced_limit=None)
    #op = sym.S(kernel, sym.var("sigma"), qbx_forced_limit=None)

    if 0:
        from random import randrange
        sigma = actx.zeros(density_discr.ndofs, angle.entry_dtype)
        for _ in range(5):
            sigma[randrange(len(sigma))] = 1

        from arraycontext import unflatten
        sigma = unflatten(angle, sigma, actx)
    else:
        sigma = actx.np.cos(mode_nr * angle)

    if isinstance(kernel, HelmholtzKernel):
        for i, elem in np.ndenumerate(sigma):
            sigma[i] = elem.astype(np.complex128)

    fld_in_vol = actx.to_numpy(
        bind(places, op, auto_where=("qbx", "targets"))(actx, sigma=sigma,
                                                        k=k))

    #fplot.show_scalar_in_mayavi(fld_in_vol.real, max_val=5)
    fplot.write_vtk_file("layerpot-3d-potential.vts",
                         [("potential", fld_in_vol)])

    bdry_normals = bind(places, sym.normal(
        density_discr.ambient_dim))(actx).as_vector(dtype=object)

    from meshmode.discretization.visualization import make_visualizer
    bdry_vis = make_visualizer(actx, density_discr, target_order)
    bdry_vis.write_vtk_file("layerpot-3d-density.vtu", [
        ("sigma", sigma),
        ("bdry_normals", bdry_normals),
    ])