Ejemplo n.º 1
0
def linear_classifier(embeddings, num_classes, cosine_classifier,
                      cosine_logits_multiplier, use_weight_norm, weight_decay):
    """Forward pass through a linear classifier, or possibly a cosine classifier.

  Args:
    embeddings: A Tensor of size [batch size, embedding dim].
    num_classes: An integer; the dimension of the classification.
    cosine_classifier: A bool. If true, a cosine classifier is used, which does
      not require a bias.
    cosine_logits_multiplier: A float. Only used if cosine_classifier is True,
      and multiplies the resulting logits.
    use_weight_norm: A bool. Whether weight norm was used. If so, then if using
      cosine classifier, normalize only the embeddings but not the weights.
    weight_decay: A float; the scalar multiple on the L2 regularization of the
      weight matrix.

  Returns:
    logits: A Tensor of size [batch size, num outputs].
  """

    embedding_dims = embeddings.get_shape().as_list()[-1]

    if use_weight_norm:
        # A variable to keep track of whether the initialization has already
        # happened.
        data_dependent_init_done = tf.get_variable('data_dependent_init_done',
                                                   initializer=0,
                                                   dtype=tf.int32,
                                                   trainable=False)

        w_fc = tf.get_variable('w_fc', [embedding_dims, num_classes],
                               initializer=tf.random_normal_initializer(
                                   0, 0.05),
                               trainable=True)
        # This init is temporary as it needs to be done in a data-dependent way.
        # It will be overwritten during the first forward pass through this layer.
        g = tf.get_variable('g',
                            dtype=tf.float32,
                            initializer=tf.ones([num_classes]),
                            trainable=True)
        b_fc = None
        if not cosine_classifier:
            # Also initialize a bias.
            b_fc = tf.get_variable('b_fc',
                                   initializer=tf.zeros([num_classes]),
                                   trainable=True)

        def _do_data_dependent_init():
            """Returns ops for the data-dependent init of g and maybe b_fc."""
            w_fc_normalized = tf.nn.l2_normalize(w_fc.read_value(), [0])
            output_init = tf.matmul(embeddings, w_fc_normalized)
            mean_init, var_init = tf.nn.moments(output_init, [0])
            # Data-dependent init values.
            g_init_value = 1. / tf.sqrt(var_init + 1e-10)
            ops = [tf.assign(g, g_init_value)]
            if not cosine_classifier:
                # Also initialize a bias in a data-dependent way.
                b_fc_init_value = -mean_init * g_init_value
                ops.append(tf.assign(b_fc, b_fc_init_value))
            # Mark that the data-dependent initialization is done to prevent it from
            # happening again in the future.
            ops.append(tf.assign(data_dependent_init_done, 1))
            return tf.group(*ops)

        # Possibly perform data-dependent init (if it hasn't been done already).
        init_op = tf.cond(tf.equal(data_dependent_init_done, 0),
                          _do_data_dependent_init, tf.no_op)

        with tf.control_dependencies([init_op]):
            # Apply weight normalization.
            w_fc *= g / tf.sqrt(tf.reduce_sum(tf.square(w_fc), [0]))
            # Forward pass through the layer defined by w_fc and b_fc.
            logits = linear_classifier_forward_pass(embeddings, w_fc, b_fc,
                                                    cosine_classifier,
                                                    cosine_logits_multiplier,
                                                    True)

    else:
        # No weight norm.
        w_fc = functional_backbones.weight_variable(
            [embedding_dims, num_classes], weight_decay=weight_decay)
        b_fc = None
        if not cosine_classifier:
            # Also initialize a bias.
            b_fc = functional_backbones.bias_variable([num_classes])
        # Forward pass through the layer defined by w_fc and b_fc.
        logits = linear_classifier_forward_pass(embeddings, w_fc, b_fc,
                                                cosine_classifier,
                                                cosine_logits_multiplier,
                                                False)
    return logits
Ejemplo n.º 2
0
  def forward_pass(self, data):
    """Computes the test logits of MAML.

    Args:
      data: A `meta_dataset.providers.Episode` containing the data for the
        episode.

    Returns:
      The output logits for the query data in this episode.
    """
    # Have to use one-hot labels since sparse softmax doesn't allow
    # second derivatives.
    support_embeddings_ = self.embedding_fn(
        data.support_images, self.is_training, reuse=tf.AUTO_REUSE)
    support_embeddings = support_embeddings_['embeddings']
    embedding_vars_dict = support_embeddings_['params']

    # TODO(eringrant): Refactor to make use of
    # `functional_backbones.linear_classifier`, which allows Gin-configuration.
    with tf.variable_scope('linear_classifier', reuse=tf.AUTO_REUSE):
      embedding_depth = support_embeddings.shape.as_list()[-1]
      fc_weights = functional_backbones.weight_variable(
          [embedding_depth, self.logit_dim],
          weight_decay=self.classifier_weight_decay)
      fc_bias = functional_backbones.bias_variable([self.logit_dim])

    # A list of variable names, a list of corresponding Variables, and a list
    # of operations (possibly empty) that creates a copy of each Variable.
    (embedding_vars_keys, embedding_vars,
     embedding_vars_copy_ops) = get_embeddings_vars_copy_ops(
         embedding_vars_dict, make_copies=not self.is_training)

    # A Variable for the weights of the fc layer, a Variable for the bias of the
    # fc layer, and a list of operations (possibly empty) that copies them.
    (fc_weights, fc_bias, fc_vars_copy_ops) = get_fc_vars_copy_ops(
        fc_weights, fc_bias, make_copies=not self.is_training)

    fc_vars = [fc_weights, fc_bias]
    num_embedding_vars = len(embedding_vars)
    num_fc_vars = len(fc_vars)

    def _cond(step, *args):
      del args
      num_steps = self.num_update_steps
      if not self.is_training:
        num_steps += self.additional_evaluation_update_steps
      return step < num_steps

    def _body(step, *args):
      """The inner update loop body."""
      updated_embedding_vars = args[0:num_embedding_vars]
      updated_fc_vars = args[num_embedding_vars:num_embedding_vars +
                             num_fc_vars]
      support_embeddings = self.embedding_fn(
          data.support_images,
          self.is_training,
          params=collections.OrderedDict(
              zip(embedding_vars_keys, updated_embedding_vars)),
          reuse=True)['embeddings']

      updated_fc_weights, updated_fc_bias = updated_fc_vars
      support_logits = tf.matmul(support_embeddings,
                                 updated_fc_weights) + updated_fc_bias

      support_logits = support_logits[:, 0:data.way]
      loss = tf.losses.softmax_cross_entropy(data.onehot_support_labels,
                                             support_logits)

      print_op = tf.no_op()
      if self.debug_log:
        print_op = tf.print(['step: ', step, updated_fc_bias[0], 'loss:', loss])

      with tf.control_dependencies([print_op]):
        updated_embedding_vars = gradient_descent_step(
            loss, updated_embedding_vars, self.first_order,
            self.adapt_batch_norm, self.alpha, False)['updated_vars']
        updated_fc_vars = gradient_descent_step(loss, updated_fc_vars,
                                                self.first_order,
                                                self.adapt_batch_norm,
                                                self.alpha,
                                                False)['updated_vars']

        step = step + 1
      return tuple([step] + list(updated_embedding_vars) +
                   list(updated_fc_vars))

    # MAML meta updates using query set examples from an episode.
    if self.zero_fc_layer:
      # To account for variable class sizes, we initialize the output
      # weights to zero. See if truncated normal initialization will help.
      zero_weights_op = tf.assign(fc_weights, tf.zeros_like(fc_weights))
      zero_bias_op = tf.assign(fc_bias, tf.zeros_like(fc_bias))
      fc_vars_init_ops = [zero_weights_op, zero_bias_op]
    else:
      fc_vars_init_ops = fc_vars_copy_ops

    if self.proto_maml_fc_layer_init:
      support_embeddings = self.embedding_fn(
          data.support_images,
          self.is_training,
          params=collections.OrderedDict(
              zip(embedding_vars_keys, embedding_vars)),
          reuse=True)['embeddings']

      prototypes = metric_learners.compute_prototypes(
          support_embeddings, data.onehot_support_labels)
      pmaml_fc_weights = self.proto_maml_fc_weights(
          prototypes, zero_pad_to_max_way=True)
      pmaml_fc_bias = self.proto_maml_fc_bias(
          prototypes, zero_pad_to_max_way=True)
      fc_vars = [pmaml_fc_weights, pmaml_fc_bias]

    # These control dependencies assign the value of each variable to a new copy
    # variable that corresponds to it. This is required at test time for
    # initilizing the copies as they are used in place of the original vars.
    with tf.control_dependencies(fc_vars_init_ops + embedding_vars_copy_ops):
      # Make step a local variable as we don't want to save and restore it.
      step = tf.Variable(
          0,
          trainable=False,
          name='inner_step_counter',
          collections=[tf.GraphKeys.LOCAL_VARIABLES])
      loop_vars = [step] + embedding_vars + fc_vars
      step_and_all_updated_vars = tf.while_loop(
          _cond, _body, loop_vars, swap_memory=True)
      step = step_and_all_updated_vars[0]
      all_updated_vars = step_and_all_updated_vars[1:]
      updated_embedding_vars = all_updated_vars[0:num_embedding_vars]
      updated_fc_weights, updated_fc_bias = all_updated_vars[
          num_embedding_vars:num_embedding_vars + num_fc_vars]

    # Forward pass the training images with the updated weights in order to
    # compute the means and variances, to use for the query's batch norm.
    support_set_moments = None
    if not self.transductive_batch_norm:
      support_set_moments = self.embedding_fn(
          data.support_images,
          self.is_training,
          params=collections.OrderedDict(
              zip(embedding_vars_keys, updated_embedding_vars)),
          reuse=True)['moments']

    query_embeddings = self.embedding_fn(
        data.query_images,
        self.is_training,
        params=collections.OrderedDict(
            zip(embedding_vars_keys, updated_embedding_vars)),
        moments=support_set_moments,  # Use support set stats for batch norm.
        reuse=True,
        backprop_through_moments=self.backprop_through_moments)['embeddings']

    query_logits = (tf.matmul(query_embeddings, updated_fc_weights) +
                    updated_fc_bias)[:, 0:data.way]

    return query_logits