Ejemplo n.º 1
0
    def standard_test_cases(self):
        fp64_list = [
            # random test
            (sollya.parse("0x1.e906cc97d7cc1p+743"), sollya.parse("0x0.000001b84ba98p-1022")),
            (sollya.parse("0x1.9c4110b0dea4fp+279"), sollya.parse("0x0.000ccf2945bd8p-1022")),
            # OpenCL CTS error
            # infinite loop
            # ERROR: remquoD: {-inf, 77} ulp error at {0x0.eaffffffffb86p-1022, -0x0.0000000000202p-1022} ({ 0x000eaffffffffb86, 0x8000000000000202}): *{0x0.00000000000eap-1022, -78} ({ 0x00000000000000ea, 0xffffffb2}) vs. {-0x1.0000000000000p+0, -1} ({ 0xbff0000000000000, 0xffffffff})
            (sollya.parse("0x0.eaffffffffb86p-1022"), sollya.parse("-0x0.0000000000202p-1022"), sollya.parse("0x0.00000000000eap-1022") if self.mode is REMAINDER_MODE else -78),
            # ERROR: remquoD: {0.000000, 92} ulp error at {-0x1.b9000000003e0p-982, -0x0.0000000000232p-1022} ({ 0x829b9000000003e0, 0x8000000000000232}): *{-0x0.0000000000000p+0, 0} ({ 0x8000000000000000, 0x00000000}) vs. {-0x0.0000000000000p+0, 92} ({ 0x8000000000000000, 0x0000005c})
            (sollya.parse("-0x1.b9000000003e0p-982"), sollya.parse("-0x0.0000000000232p-1022"), FP_MinusZero(self.precision) if self.mode is REMAINDER_MODE else 0),

            # ERROR: remquoD: {-26458647810801664.000000, 1} ulp error at {-0x1.be000000005dfp+977, 0x1.78000000006f1p+975} ({ 0xfd0be000000005df, 0x7ce78000000006f1}): *{0x1.8000000002ce4p+973, -5} ({ 0x7cc8000000002ce4, 0xfffffffb}) vs. {-0x1.17ffffffffbb8p+975, -4} ({ 0xfce17ffffffffbb8, 0xfffffffc})
            (sollya.parse("-0x1.be000000005dfp+977"), sollya.parse("0x1.78000000006f1p+975"), sollya.parse("0x1.8000000002ce4p+973") if self.mode is REMAINDER_MODE else -5),
            # ERROR: remquoD: {-171.000000, -1} ulp error at {-0x1.02ffffffffc2bp+489, -0x0.00000000000abp-1022} ({ 0xde802ffffffffc2b, 0x80000000000000ab}): *{0x0.0000000000055p-1022, 127} ({ 0x0000000000000055, 0x0000007f}) vs. {-0x0.0000000000056p-1022, 254} ({ 0x8000000000000056, 0x000000fe})
            (sollya.parse("0x1.02ffffffffc2bp+489"), sollya.parse("0x0.00000000000abp-1022")),
            (sollya.parse("-0x1.02ffffffffc2bp+489"), sollya.parse("-0x0.00000000000abp-1022"), sollya.parse("0x0.0000000000055p-1022") if self.mode is REMAINDER_MODE else 127),
            # ERROR: remquoD: {nan, 0} ulp error at {-0x1.69000000001e1p+749, -inf} ({ 0xeec69000000001e1, 0xfff0000000000000}): *{-0x1.69000000001e1p+749, 0} ({ 0xeec69000000001e1, 0x00000000}) vs. {nan, 0} ({ 0x7ff8000000000000, 0x00000000})
            (sollya.parse("-0x1.69000000001e1p+749"), FP_MinusInfty(self.precision), sollya.parse("-0x1.69000000001e1p+749") if self.mode is REMAINDER_MODE else 0),

            # ERROR: remquo: {0.000000, -126} ulp error at {0x1.921456p+70, -0x1.921456p+70} ({0x62c90a2b, 0xe2c90a2b}): *{0x0p+0, -1} ({0x00000000, 0xffffffff}) vs. {0x0p+0, 1} ({0x00000000, 0x00000001})
            (sollya.parse("0x1.921456p+70"), sollya.parse("-0x1.921456p+70"), 0 if self.mode is REMAINDER_MODE else -1),
            # ERROR: remquoD: {10731233487093760.000000, 0} ulp error at {0x1.30fffffffff7ep-597, -0x1.13ffffffffed0p-596} ({ 0x1aa30fffffffff7e, 0x9ab13ffffffffed0}): *{-0x1.edffffffffc44p-598, -1} ({ 0x9a9edffffffffc44, 0xffffffff}) vs. {0x1.d000000000ae0p-600, -1} ({ 0x1a7d000000000ae0, 0xffffffff})
            (sollya.parse("0x1.30fffffffff7ep-597"), sollya.parse("-0x1.13ffffffffed0p-596"), -1 if self.mode is QUOTIENT_MODE else sollya.parse("-0x1.edffffffffc44p-598")),
            #  {-0x1.9bffffffffd38p+361, 0x0.00000000000a5p-1022} ({ 0xd689bffffffffd38, 0x00000000000000a5}): *{-0x0.000000000000fp-1022, -93} ({ 0x800000000000000f, 0xffffffa3}) vs. {0x0.000000000000fp-1022, -1171354717} ({ 0x000000000000000f, 0xba2e8ba3})
            (sollya.parse("-0x1.9bffffffffd38p+361"), sollya.parse("0x0.00000000000a5p-1022")),
            (sollya.parse("0x0.ac0f94b9da13p-1022"), sollya.parse("-0x1.1e4580d7eb2e7p-1022")),
            (sollya.parse("0x1.fffffffffffffp+1023"), sollya.parse("-0x1.fffffffffffffp+1023")),
            (sollya.parse("0x0.a9f466178b1fcp-1022"), sollya.parse("0x0.b22f552dc829ap-1022")),
            (sollya.parse("0x1.4af8b07942537p-430"), sollya.parse("-0x0.f72be041645b7p-1022")),
            #result is 0x0.0000000000505p-1022 vs expected0x0.0000000000a3cp-1022
            #(sollya.parse("0x1.9f9f4e9a29fcfp-421"), sollya.parse("0x0.0000000001b59p-1022"), sollya.parse("0x0.0000000000a3cp-1022")),
            (sollya.parse("0x1.9906165fb3e61p+62"), sollya.parse("0x1.9906165fb3e61p+60")),
            (sollya.parse("0x1.9906165fb3e61p+62"), sollya.parse("0x0.0000000005e7dp-1022")),
            (sollya.parse("0x1.77f00143ba3f4p+943"), sollya.parse("0x0.000000000001p-1022")),
            (sollya.parse("0x0.000000000001p-1022"), sollya.parse("0x0.000000000001p-1022")),
            (sollya.parse("0x0.000000000348bp-1022"), sollya.parse("0x0.000000000001p-1022")),
            (sollya.parse("0x1.bcf3955c3b244p-130"), sollya.parse("0x1.77aef33890951p-1003")),
            (sollya.parse("0x1.8de59bd84c51ep-866"), sollya.parse("0x1.045aa9bf14fb1p-774")),
            (sollya.parse("0x1.9f9f4e9a29fcfp-421"), sollya.parse("0x0.0000000001b59p-1022")),
            (sollya.parse("0x1.2e1c59b43a459p+953"), sollya.parse("0x0.0000001cf5319p-1022")),
            (sollya.parse("-0x1.86c83abe0854ep+268"), FP_MinusInfty(self.precision)),
            # bad sign of remainder
            (sollya.parse("0x1.d3fb9968850a5p-960"), sollya.parse("-0x0.23c1ed19c45fp-1022")),
            # bad sign of zero
            (FP_MinusZero(self.precision), sollya.parse("0x1.85200a9235193p-450")),
            # bad remainder
            (sollya.parse("0x1.fffffffffffffp+1023"), sollya.parse("0x1.1f31bcd002a7ap-803")),
            # bad sign
            (sollya.parse("-0x1.4607d0c9fc1a7p-878"), sollya.parse("-0x1.9b666b840b1bp-1023")),
        ]
        return fp64_list if self.precision.get_bit_size() >= 64 else []
Ejemplo n.º 2
0
    def __call__(args):
        PRECISION = ML_Binary64
        value_list = [
            FP_PlusInfty(PRECISION),
            FP_MinusInfty(PRECISION),
            FP_PlusZero(PRECISION),
            FP_MinusZero(PRECISION),
            FP_QNaN(PRECISION),
            FP_SNaN(PRECISION),
            #FP_PlusOmega(PRECISION),
            #FP_MinusOmega(PRECISION),
            NumericValue(7.0),
            NumericValue(-3.0),
        ]
        op_map = {
            "+": operator.__add__,
            "-": operator.__sub__,
            "*": operator.__mul__,
        }
        for op in op_map:
            for lhs in value_list:
                for rhs in value_list:
                    print("{} {} {} = {}".format(lhs, op, rhs,
                                                 op_map[op](lhs, rhs)))

        return True
Ejemplo n.º 3
0
 def get_integer_coding(self, value, language=C_Code):
     if FP_SpecialValue.is_special_value(value):
         return self.get_special_value_coding(value, language)
     elif value == ml_infty:
         return self.get_special_value_coding(FP_PlusInfty(self), language)
     elif value == -ml_infty:
         return self.get_special_value_coding(FP_MinusInfty(self), language)
     else:
         value = sollya.round(value, self.get_sollya_object(), sollya.RN)
         # FIXME: managing negative zero
         sign = int(1 if value < 0 else 0)
         value = abs(value)
         if value == 0.0:
             Log.report(Log.Warning,
                        "+0.0 forced during get_integer_coding conversion")
             exp_biased = 0
             mant = 0
         else:
             exp = int(sollya.floor(sollya.log2(value)))
             exp_biased = int(exp - self.get_bias())
             if exp < self.get_emin_normal():
                 exp_biased = 0
                 mant = int((value / S2**self.get_emin_subnormal()))
             else:
                 mant = int(
                     (value / S2**exp - 1.0) * (S2**self.get_field_size()))
         return mant | (exp_biased << self.get_field_size()) | (
             sign << (self.get_field_size() + self.get_exponent_size()))
Ejemplo n.º 4
0
 def __call__(args):
     for PRECISION in [ML_Binary32, ML_Binary64]:
         TEST_CASE = [
             (FP_PlusOmega(PRECISION), "<", FP_SNaN(PRECISION), Unordered),
             (FP_PlusOmega(PRECISION), "<=", FP_SNaN(PRECISION), Unordered),
             (FP_PlusInfty(PRECISION), "==", FP_PlusInfty(PRECISION), True),
             (FP_PlusInfty(PRECISION), "==", FP_QNaN(PRECISION), False),
             (FP_PlusZero(PRECISION), "==", FP_MinusZero(PRECISION), True),
             (FP_PlusZero(PRECISION), "!=", FP_MinusZero(PRECISION), False),
             (FP_QNaN(PRECISION), "==", FP_QNaN(PRECISION), False),
             (FP_PlusInfty(PRECISION), "==", -FP_MinusInfty(PRECISION), True),
             (FP_MinusInfty(PRECISION), ">", 0, False),
             (FP_MinusInfty(PRECISION), ">", FP_PlusZero(PRECISION), False),
             (FP_MinusInfty(PRECISION), ">", FP_MinusZero(PRECISION), False),
         ]
         for lhs, op, rhs, expected in TEST_CASE:
             result = op_map[op](lhs, rhs)
             assert result == expected, "failure: {} {} {} = {} vs expected {} ".format(lhs, op, rhsresult, expected)
     return True
Ejemplo n.º 5
0
 def numeric_emulate(self, vx, n):
     """ Numeric emulation of n-th root """
     if FP_SpecialValue.is_special_value(vx):
         if is_nan(vx):
             return FP_QNaN(self.precision)
         elif is_plus_infty(vx):
             return SOLLYA_INFTY
         elif is_minus_infty(vx):
             if int(n) % 2 == 1:
                 return vx
             else:
                 return FP_QNaN(self.precision)
         elif is_zero(vx):
             if int(n) % 2 != 0 and n < 0:
                 if is_plus_zero(vx):
                     return FP_PlusInfty(self.precision)
                 else:
                     return FP_MinusInfty(self.precision)
             elif int(n) % 2 == 0:
                 if n < 0:
                     return FP_PlusInfty(self.precision)
                 elif n > 0:
                     return FP_PlusZero(self.precision)
             return FP_QNaN(self.precision)
         else:
             raise NotImplementedError
     # OpenCL-C rootn, x < 0 and y odd: -exp2(log2(-x) / y)
     S2 = sollya.SollyaObject(2)
     if vx < 0:
         if int(n) % 2 != 0:
             if n > 0:
                 v = -bigfloat.root(
                     sollya.SollyaObject(-vx).bigfloat(), int(n))
             else:
                 v = -S2**(sollya.log2(-vx) / n)
         else:
             return FP_QNaN(self.precision)
     elif n < 0:
         # OpenCL-C definition
         v = S2**(sollya.log2(vx) / n)
     else:
         v = bigfloat.root(sollya.SollyaObject(vx).bigfloat(), int(n))
     return sollya.SollyaObject(v)
Ejemplo n.º 6
0
    def generate_scheme(self):
        vx = self.implementation.add_input_variable("x",
                                                    self.get_input_precision())

        sollya_precision = self.get_input_precision().get_sollya_object()

        # local overloading of RaiseReturn operation
        def ExpRaiseReturn(*args, **kwords):
            kwords["arg_value"] = vx
            kwords["function_name"] = self.function_name
            return RaiseReturn(*args, **kwords)

        # testing special value inputs
        test_nan_or_inf = Test(vx,
                               specifier=Test.IsInfOrNaN,
                               likely=False,
                               debug=True,
                               tag="nan_or_inf")
        test_nan = Test(vx,
                        specifier=Test.IsNaN,
                        debug=True,
                        tag="is_nan_test")
        test_positive = Comparison(vx,
                                   0,
                                   specifier=Comparison.GreaterOrEqual,
                                   debug=True,
                                   tag="inf_sign")
        test_signaling_nan = Test(vx,
                                  specifier=Test.IsSignalingNaN,
                                  debug=True,
                                  tag="is_signaling_nan")
        # if input is a signaling NaN, raise an invalid exception and returns
        # a quiet NaN
        return_snan = Statement(
            ExpRaiseReturn(ML_FPE_Invalid,
                           return_value=FP_QNaN(self.precision)))

        vx_exp = ExponentExtraction(vx, tag="vx_exp", debug=debugd)

        int_precision = self.precision.get_integer_format()

        # log2(vx)
        # r = vx_mant
        # e = vx_exp
        # vx reduced to r in [1, 2[
        # log2(vx) = log2(r * 2^e)
        #          = log2(r) + e
        #
        ## log2(r) is approximated by
        #  log2(r) = log2(inv_seed(r) * r / inv_seed(r)
        #          = log2(inv_seed(r) * r) - log2(inv_seed(r))
        # inv_seed(r) in ]1/2, 1] => log2(inv_seed(r)) in ]-1, 0]
        #
        # inv_seed(r) * r ~ 1
        # we can easily tabulate -log2(inv_seed(r))
        #

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision=self.precision)
        dummy_div_seed = DivisionSeed(dummy_var, precision=self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed,
            language=None,
            table_getter=lambda self: self.approx_table_map)
        # table creation
        table_index_size = 7
        log_table = ML_NewTable(dimensions=[2**table_index_size, 2],
                                storage_precision=self.precision,
                                tag=self.uniquify_name("inv_table"))
        # value for index 0 is set to 0.0
        log_table[0][0] = 0.0
        log_table[0][1] = 0.0
        for i in range(1, 2**table_index_size):
            #inv_value = (1.0 + (self.processor.inv_approx_table[i] / S2**9) + S2**-52) * S2**-1
            #inv_value = (1.0 + (inv_approx_table[i][0] / S2**9) ) * S2**-1
            #print inv_approx_table[i][0], inv_value
            inv_value = inv_approx_table[i][0]
            value_high_bitsize = self.precision.get_field_size() - (
                self.precision.get_exponent_size() + 1)
            value_high = round(log2(inv_value), value_high_bitsize, sollya.RN)
            value_low = round(
                log2(inv_value) - value_high, sollya_precision, sollya.RN)
            log_table[i][0] = value_high
            log_table[i][1] = value_low

        def compute_log(_vx, exp_corr_factor=None):
            _vx_mant = MantissaExtraction(_vx,
                                          tag="_vx_mant",
                                          precision=self.precision,
                                          debug=debug_lftolx)
            _vx_exp = ExponentExtraction(_vx, tag="_vx_exp", debug=debugd)

            # The main table is indexed by the 7 most significant bits
            # of the mantissa
            table_index = inv_approx_table.index_function(_vx_mant)
            table_index.set_attributes(tag="table_index", debug=debuglld)

            # argument reduction
            # Using AND -2 to exclude LSB set to 1 for Newton-Raphson convergence
            # TODO: detect if single operand inverse seed is supported by the targeted architecture
            pre_arg_red_index = TypeCast(BitLogicAnd(
                TypeCast(DivisionSeed(_vx_mant,
                                      precision=self.precision,
                                      tag="seed",
                                      debug=debug_lftolx,
                                      silent=True),
                         precision=ML_UInt64),
                Constant(-2, precision=ML_UInt64),
                precision=ML_UInt64),
                                         precision=self.precision,
                                         tag="pre_arg_red_index",
                                         debug=debug_lftolx)
            arg_red_index = Select(Equal(table_index, 0),
                                   1.0,
                                   pre_arg_red_index,
                                   tag="arg_red_index",
                                   debug=debug_lftolx)
            _red_vx = FMA(arg_red_index, _vx_mant, -1.0)
            _red_vx.set_attributes(tag="_red_vx", debug=debug_lftolx)
            inv_err = S2**-inv_approx_table.index_size
            red_interval = Interval(1 - inv_err, 1 + inv_err)

            # return in case of standard (non-special) input
            _log_inv_lo = TableLoad(log_table,
                                    table_index,
                                    1,
                                    tag="log_inv_lo",
                                    debug=debug_lftolx)
            _log_inv_hi = TableLoad(log_table,
                                    table_index,
                                    0,
                                    tag="log_inv_hi",
                                    debug=debug_lftolx)

            Log.report(Log.Verbose, "building mathematical polynomial")
            approx_interval = Interval(-inv_err, inv_err)
            poly_degree = sup(
                guessdegree(
                    log2(1 + sollya.x) / sollya.x, approx_interval, S2**
                    -(self.precision.get_field_size() * 1.1))) + 1
            sollya.settings.display = sollya.hexadecimal
            global_poly_object, approx_error = Polynomial.build_from_approximation_with_error(
                log2(1 + sollya.x) / sollya.x,
                poly_degree, [self.precision] * (poly_degree + 1),
                approx_interval,
                sollya.absolute,
                error_function=lambda p, f, ai, mod, t: sollya.dirtyinfnorm(
                    p - f, ai))
            Log.report(
                Log.Info, "poly_degree={}, approx_error={}".format(
                    poly_degree, approx_error))
            poly_object = global_poly_object.sub_poly(start_index=1, offset=1)
            #poly_object = global_poly_object.sub_poly(start_index=0,offset=0)

            Attributes.set_default_silent(True)
            Attributes.set_default_rounding_mode(ML_RoundToNearest)

            Log.report(Log.Verbose, "generating polynomial evaluation scheme")
            pre_poly = PolynomialSchemeEvaluator.generate_horner_scheme(
                poly_object, _red_vx, unified_precision=self.precision)
            _poly = FMA(pre_poly, _red_vx,
                        global_poly_object.get_cst_coeff(0, self.precision))
            _poly.set_attributes(tag="poly", debug=debug_lftolx)
            Log.report(
                Log.Verbose, "sollya global_poly_object: {}".format(
                    global_poly_object.get_sollya_object()))
            Log.report(
                Log.Verbose, "sollya poly_object: {}".format(
                    poly_object.get_sollya_object()))

            corr_exp = _vx_exp if exp_corr_factor == None else _vx_exp + exp_corr_factor

            Attributes.unset_default_rounding_mode()
            Attributes.unset_default_silent()

            pre_result = -_log_inv_hi + (_red_vx * _poly + (-_log_inv_lo))
            pre_result.set_attributes(tag="pre_result", debug=debug_lftolx)
            exact_log2_hi_exp = Conversion(corr_exp, precision=self.precision)
            exact_log2_hi_exp.set_attributes(tag="exact_log2_hi_hex",
                                             debug=debug_lftolx)
            _result = exact_log2_hi_exp + pre_result
            return _result, _poly, _log_inv_lo, _log_inv_hi, _red_vx

        result, poly, log_inv_lo, log_inv_hi, red_vx = compute_log(vx)
        result.set_attributes(tag="result", debug=debug_lftolx)

        # specific input value predicate
        neg_input = Comparison(vx,
                               0,
                               likely=False,
                               specifier=Comparison.Less,
                               debug=debugd,
                               tag="neg_input")
        vx_nan_or_inf = Test(vx,
                             specifier=Test.IsInfOrNaN,
                             likely=False,
                             debug=debugd,
                             tag="nan_or_inf")
        vx_snan = Test(vx,
                       specifier=Test.IsSignalingNaN,
                       likely=False,
                       debug=debugd,
                       tag="vx_snan")
        vx_inf = Test(vx,
                      specifier=Test.IsInfty,
                      likely=False,
                      debug=debugd,
                      tag="vx_inf")
        vx_subnormal = Test(vx,
                            specifier=Test.IsSubnormal,
                            likely=False,
                            debug=debugd,
                            tag="vx_subnormal")
        vx_zero = Test(vx,
                       specifier=Test.IsZero,
                       likely=False,
                       debug=debugd,
                       tag="vx_zero")

        exp_mone = Equal(vx_exp,
                         -1,
                         tag="exp_minus_one",
                         debug=debugd,
                         likely=False)
        vx_one = Equal(vx, 1.0, tag="vx_one", likely=False, debug=debugd)

        # Specific specific for the case exp == -1
        # log2(x) = log2(m) - 1
        #
        # as m in [1, 2[, log2(m) in [0, 1[
        # if r is close to 2, a catastrophic cancellation can occur
        #
        # r = seed(m)
        # log2(x) = log2(seed(m) * m / seed(m)) - 1
        #         = log2(seed(m) * m) - log2(seed(m)) - 1
        #
        # for m really close to 2 => seed(m) = 0.5
        #     => log2(x) = log2(0.5 * m)
        #                =
        result_exp_m1 = (-log_inv_hi - 1.0) + FMA(poly, red_vx, -log_inv_lo)
        result_exp_m1.set_attributes(tag="result_exp_m1", debug=debug_lftolx)

        m100 = -100
        S2100 = Constant(S2**100, precision=self.precision)
        result_subnormal, _, _, _, _ = compute_log(vx * S2100,
                                                   exp_corr_factor=m100)
        result_subnormal.set_attributes(tag="result_subnormal",
                                        debug=debug_lftolx)

        one_err = S2**-7
        approx_interval_one = Interval(-one_err, one_err)
        red_vx_one = vx - 1.0
        poly_degree_one = sup(
            guessdegree(
                log(1 + x) / x, approx_interval_one, S2**
                -(self.precision.get_field_size() + 1))) + 1
        poly_object_one = Polynomial.build_from_approximation(
            log(1 + sollya.x) / sollya.x, poly_degree_one,
            [self.precision] * (poly_degree_one + 1), approx_interval_one,
            absolute).sub_poly(start_index=1)
        poly_one = PolynomialSchemeEvaluator.generate_horner_scheme(
            poly_object_one, red_vx_one, unified_precision=self.precision)
        poly_one.set_attributes(tag="poly_one", debug=debug_lftolx)
        result_one = red_vx_one + red_vx_one * poly_one
        cond_one = (vx < (1 + one_err)) & (vx > (1 - one_err))
        cond_one.set_attributes(tag="cond_one", debug=debugd, likely=False)

        # main scheme
        pre_scheme = ConditionBlock(
            neg_input,
            Statement(ClearException(), Raise(ML_FPE_Invalid),
                      Return(FP_QNaN(self.precision))),
            ConditionBlock(
                vx_nan_or_inf,
                ConditionBlock(
                    vx_inf,
                    Statement(
                        ClearException(),
                        Return(FP_PlusInfty(self.precision)),
                    ),
                    Statement(ClearException(),
                              ConditionBlock(vx_snan, Raise(ML_FPE_Invalid)),
                              Return(FP_QNaN(self.precision)))),
                ConditionBlock(
                    vx_subnormal,
                    ConditionBlock(
                        vx_zero,
                        Statement(
                            ClearException(),
                            Raise(ML_FPE_DivideByZero),
                            Return(FP_MinusInfty(self.precision)),
                        ),
                        Statement(ClearException(), result_subnormal,
                                  Return(result_subnormal))),
                    ConditionBlock(
                        vx_one,
                        Statement(
                            ClearException(),
                            Return(FP_PlusZero(self.precision)),
                        ),
                        ConditionBlock(exp_mone, Return(result_exp_m1),
                                       Return(result))))))
        scheme = Statement(result, pre_scheme)
        return scheme
Ejemplo n.º 7
0
    def generate_scheme(self):
        vx = self.implementation.add_input_variable("x", self.precision)

        sollya_precision = self.precision.sollya_object

        # constant computation
        invlog2 = round(1 / log(2), sollya_precision, sollya.RN)
        invlog2_cst = Constant(invlog2, precision=self.precision)

        #v_log2_hi = round(log(2), 16, sollya.RN)
        #v_log2_lo = round(log(2) - v_log2_hi, sollya_precision, sollya.RN)

        #log2_hi = Constant(v_log2_hi, precision = self.precision, tag = "log2_hi")
        #log2_lo = Constant(v_log2_lo, precision = self.precision, tag = "log2_lo")

        # local overloading of RaiseReturn operation
        def ExpRaiseReturn(*args, **kwords):
            kwords["arg_value"] = vx
            kwords["function_name"] = self.function_name
            return RaiseReturn(*args, **kwords)

        test_nan_or_inf = Test(vx,
                               specifier=Test.IsInfOrNaN,
                               likely=False,
                               debug=True,
                               tag="nan_or_inf")
        test_nan = Test(vx,
                        specifier=Test.IsNaN,
                        debug=True,
                        tag="is_nan_test")
        test_positive = Comparison(vx,
                                   0,
                                   specifier=Comparison.GreaterOrEqual,
                                   debug=True,
                                   tag="inf_sign")

        test_signaling_nan = Test(vx,
                                  specifier=Test.IsSignalingNaN,
                                  debug=True,
                                  tag="is_signaling_nan")
        return_snan = Statement(
            ExpRaiseReturn(ML_FPE_Invalid,
                           return_value=FP_QNaN(self.precision)))

        v_log2_hi = round(
            log(2),
            self.precision.get_field_size() -
            (self.precision.get_exponent_size() + 1), sollya.RN)
        v_log2_lo = round(
            log(2) - v_log2_hi, self.precision.sollya_object, sollya.RN)
        log2_hi = Constant(v_log2_hi, precision=self.precision, tag="log2_hi")
        log2_lo = Constant(v_log2_lo, precision=self.precision, tag="log2_lo")

        vx_exp = ExponentExtraction(vx, tag="vx_exp", debug=debug_multi)

        int_precision = self.precision.get_integer_format()

        # table creation
        table_index_size = 7
        log_table = ML_NewTable(dimensions=[2**table_index_size, 2],
                                storage_precision=self.precision,
                                tag=self.uniquify_name("inv_table"))
        log_table[0][0] = 0.0
        log_table[0][1] = 0.0

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision=self.precision)
        dummy_div_seed = ReciprocalSeed(dummy_var, precision=self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed,
            language=None,
            table_getter=lambda self: self.approx_table_map)

        integer_precision = {
            ML_Binary32: ML_UInt32,
            ML_Binary64: ML_UInt64
        }[self.precision]

        for i in range(1, 2**table_index_size):
            #inv_value = (1.0 + (self.processor.inv_approx_table[i] / S2**9) + S2**-52) * S2**-1
            inv_value = inv_approx_table[
                i]  # (1.0 + (inv_approx_table[i][0] / S2**9) ) * S2**-1
            value_high = round(
                log(inv_value),
                self.precision.get_field_size() -
                (self.precision.get_exponent_size() + 1), sollya.RN)
            value_low = round(
                log(inv_value) - value_high, sollya_precision, sollya.RN)
            log_table[i][0] = value_high
            log_table[i][1] = value_low

        def compute_log(_vx, exp_corr_factor=None):
            _vx_mant = MantissaExtraction(_vx,
                                          tag="_vx_mant",
                                          debug=debug_multi,
                                          precision=self.precision)
            _vx_exp = ExponentExtraction(_vx, tag="_vx_exp", debug=debug_multi)

            table_index = BitLogicAnd(BitLogicRightShift(
                TypeCast(_vx_mant, precision=int_precision, debug=debug_multi),
                self.precision.get_field_size() - 7,
                debug=debug_multi),
                                      0x7f,
                                      tag="table_index",
                                      debug=debug_multi)

            # argument reduction
            # TODO: detect if single operand inverse seed is supported by the targeted architecture
            pre_arg_red_index = TypeCast(BitLogicAnd(
                TypeCast(ReciprocalSeed(_vx_mant,
                                        precision=self.precision,
                                        tag="seed",
                                        debug=debug_multi,
                                        silent=True),
                         precision=integer_precision),
                Constant(-2, precision=integer_precision),
                precision=integer_precision),
                                         precision=self.precision,
                                         tag="pre_arg_red_index",
                                         debug=debug_multi)

            arg_red_index = Select(Equal(table_index, 0), 1.0,
                                   pre_arg_red_index)

            #_red_vx        = arg_red_index * _vx_mant - 1.0
            _red_vx = FusedMultiplyAdd(arg_red_index,
                                       _vx_mant,
                                       1.0,
                                       specifier=FusedMultiplyAdd.Subtract)
            _red_vx.set_attributes(tag="_red_vx", debug=debug_multi)

            inv_err = S2**-7
            red_interval = Interval(1 - inv_err, 1 + inv_err)

            # return in case of standard (non-special) input
            _log_inv_lo = TableLoad(log_table,
                                    table_index,
                                    1,
                                    tag="log_inv_lo",
                                    debug=debug_multi)
            _log_inv_hi = TableLoad(log_table,
                                    table_index,
                                    0,
                                    tag="log_inv_hi",
                                    debug=debug_multi)

            Log.report(Log.Verbose, "building mathematical polynomial")
            approx_interval = Interval(-inv_err, inv_err)
            poly_degree = sup(
                guessdegree(
                    log(1 + sollya.x) / sollya.x, approx_interval, S2**
                    -(self.precision.get_field_size() + 1))) + 1
            global_poly_object = Polynomial.build_from_approximation(
                log(1 + sollya.x) / sollya.x, poly_degree,
                [1] + [self.precision] * (poly_degree), approx_interval,
                sollya.absolute)
            poly_object = global_poly_object.sub_poly(start_index=1)

            Log.report(Log.Verbose, "generating polynomial evaluation scheme")
            #_poly = PolynomialSchemeEvaluator.generate_horner_scheme(poly_object, _red_vx, unified_precision = self.precision)
            _poly = PolynomialSchemeEvaluator.generate_estrin_scheme(
                poly_object, _red_vx, unified_precision=self.precision)

            _poly.set_attributes(tag="poly", debug=debug_multi)

            corr_exp = Conversion(
                _vx_exp if exp_corr_factor == None else _vx_exp +
                exp_corr_factor,
                precision=self.precision)
            split_red_vx = Split(_red_vx,
                                 precision=ML_DoubleDouble,
                                 tag="split_red_vx",
                                 debug=debug_multi)
            red_vx_hi = split_red_vx.hi
            red_vx_lo = split_red_vx.lo

            # result = _red_vx * poly - log_inv_hi - log_inv_lo + _vx_exp * log2_hi + _vx_exp * log2_lo
            pre_result = -_log_inv_hi + (_red_vx +
                                         (_red_vx * _poly +
                                          (corr_exp * log2_lo - _log_inv_lo)))
            pre_result.set_attributes(tag="pre_result", debug=debug_multi)
            exact_log2_hi_exp = corr_exp * log2_hi
            exact_log2_hi_exp.set_attributes(tag="exact_log2_hi_exp",
                                             debug=debug_multi)
            cancel_part = (corr_exp * log2_hi - _log_inv_hi)
            cancel_part.set_attributes(tag="cancel_part", debug=debug_multi)
            sub_part = red_vx_hi + cancel_part
            sub_part.set_attributes(tag="sub_part", debug=debug_multi)
            #result_one_low_part = (red_vx_hi * _poly + (red_vx_lo + (red_vx_lo * _poly + (corr_exp * log2_lo - _log_inv_lo))))
            result_one_low_part = ((red_vx_lo +
                                    (red_vx_lo * _poly +
                                     (corr_exp * log2_lo - _log_inv_lo))))
            result_one_low_part.set_attributes(tag="result_one_low_part",
                                               debug=debug_multi)
            _result_one = (
                (sub_part) + red_vx_hi * _poly) + result_one_low_part
            return exact_log2_hi_exp + pre_result, _poly, _log_inv_lo, _log_inv_hi, _red_vx, _result_one

        result, poly, log_inv_lo, log_inv_hi, red_vx, new_result_one = compute_log(
            vx)
        result.set_attributes(tag="result", debug=debug_multi)
        new_result_one.set_attributes(tag="new_result_one", debug=debug_multi)

        neg_input = Comparison(vx,
                               0,
                               likely=False,
                               specifier=Comparison.Less,
                               debug=debug_multi,
                               tag="neg_input")
        vx_nan_or_inf = Test(vx,
                             specifier=Test.IsInfOrNaN,
                             likely=False,
                             debug=debug_multi,
                             tag="nan_or_inf")
        vx_snan = Test(vx,
                       specifier=Test.IsSignalingNaN,
                       likely=False,
                       debug=debug_multi,
                       tag="snan")
        vx_inf = Test(vx,
                      specifier=Test.IsInfty,
                      likely=False,
                      debug=debug_multi,
                      tag="inf")
        vx_subnormal = Test(vx,
                            specifier=Test.IsSubnormal,
                            likely=False,
                            debug=debug_multi,
                            tag="vx_subnormal")
        vx_zero = Test(vx,
                       specifier=Test.IsZero,
                       likely=False,
                       debug=debug_multi,
                       tag="vx_zero")

        exp_mone = Equal(vx_exp,
                         -1,
                         tag="exp_minus_one",
                         debug=debug_multi,
                         likely=False)
        vx_one = Equal(vx, 1.0, tag="vx_one", likely=False, debug=debug_multi)

        # exp=-1 case
        Log.report(Log.Verbose, "managing exp=-1 case")

        result2 = (-log_inv_hi - log2_hi) + (
            (red_vx + poly * red_vx) - log2_lo - log_inv_lo)
        result2.set_attributes(tag="result2", debug=debug_multi)

        m100 = -100
        S2100 = Constant(S2**100, precision=self.precision)
        result_subnormal, _, _, _, _, _ = compute_log(vx * S2100,
                                                      exp_corr_factor=m100)

        Log.report(Log.Verbose, "managing close to 1.0 cases")
        one_err = S2**-7
        approx_interval_one = Interval(-one_err, one_err)
        red_vx_one = vx - 1.0
        poly_degree_one = sup(
            guessdegree(
                log(1 + sollya.x) / sollya.x, approx_interval_one, S2**
                -(self.precision.get_field_size() + 1))) + 1
        poly_object_one = Polynomial.build_from_approximation(
            log(1 + sollya.x) / sollya.x, poly_degree_one,
            [self.precision] * (poly_degree_one + 1), approx_interval_one,
            sollya.absolute).sub_poly(start_index=1)
        poly_one = PolynomialSchemeEvaluator.generate_horner_scheme(
            poly_object_one, red_vx_one, unified_precision=self.precision)
        poly_one.set_attributes(tag="poly_one", debug=debug_multi)
        result_one = red_vx_one + red_vx_one * poly_one
        cond_one = (vx < (1 + one_err)) & (vx > (1 - one_err))
        cond_one.set_attributes(tag="cond_one",
                                debug=debug_multi,
                                likely=False)

        # main scheme
        pre_scheme = ConditionBlock(
            neg_input,
            Statement(ClearException(), Raise(ML_FPE_Invalid),
                      Return(FP_QNaN(self.precision))),
            ConditionBlock(
                vx_nan_or_inf,
                ConditionBlock(
                    vx_inf,
                    Statement(
                        ClearException(),
                        Return(FP_PlusInfty(self.precision)),
                    ),
                    Statement(ClearException(),
                              ConditionBlock(vx_snan, Raise(ML_FPE_Invalid)),
                              Return(FP_QNaN(self.precision)))),
                ConditionBlock(
                    vx_subnormal,
                    ConditionBlock(
                        vx_zero,
                        Statement(
                            ClearException(),
                            Raise(ML_FPE_DivideByZero),
                            Return(FP_MinusInfty(self.precision)),
                        ), Return(result_subnormal)),
                    ConditionBlock(
                        vx_one,
                        Statement(
                            ClearException(),
                            Return(FP_PlusZero(self.precision)),
                        ),
                        ConditionBlock(exp_mone, Return(result2),
                                       Return(result))
                        #ConditionBlock(cond_one,
                        #Return(new_result_one),
                        #ConditionBlock(exp_mone,
                        #Return(result2),
                        #Return(result)
                        #)
                        #)
                    ))))
        scheme = pre_scheme

        return scheme
Ejemplo n.º 8
0
    def generate_scalar_scheme(self, vx, vy):
        # fixing inputs' node tag
        vx.set_attributes(tag="x")
        vy.set_attributes(tag="y")

        int_precision = self.precision.get_integer_format()

        # assuming x = m.2^e (m in [1, 2[)
        #          n, positive or null integers
        #
        # pow(x, n) = x^(y)
        #             = exp(y * log(x))
        #             = 2^(y * log2(x))
        #             = 2^(y * (log2(m) + e))
        #
        e = ExponentExtraction(vx, tag="e", precision=int_precision)
        m = MantissaExtraction(vx, tag="m", precision=self.precision)

        # approximation log2(m)

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision = self.precision)
        dummy_div_seed = ReciprocalSeed(dummy_var, precision = self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed, language=None,
            table_getter= lambda self: self.approx_table_map)

        log_f = sollya.log(sollya.x) # /sollya.log(self.basis)



        ml_log_args = ML_GenericLog.get_default_args(precision=self.precision, basis=2)
        ml_log = ML_GenericLog(ml_log_args)
        log_table, log_table_tho, table_index_range = ml_log.generate_log_table(log_f, inv_approx_table)
        log_approx = ml_log.generate_reduced_log_split(Abs(m, precision=self.precision), log_f, inv_approx_table, log_table)

        log_approx = Select(Equal(vx, 0), FP_MinusInfty(self.precision), log_approx)
        log_approx.set_attributes(tag="log_approx", debug=debug_multi)
        r = Multiplication(log_approx, vy, tag="r", debug=debug_multi)


        # 2^(y * (log2(m) + e)) = 2^(y * log2(m)) * 2^(y * e)
        #
        # log_approx = log2(Abs(m))
        # r = y * log_approx ~ y * log2(m)
        #
        # NOTES: manage cases where e is negative and
        # (y * log2(m)) AND (y * e) could cancel out
        # if e positive, whichever the sign of y (y * log2(m)) and (y * e) CANNOT
        # be of opposite signs

        # log2(m) in [0, 1[ so cancellation can occur only if e == -1
        # we split 2^x in 2^x = 2^t0 * 2^t1
        # if e < 0: t0 = y * (log2(m) + e), t1=0
        # else:     t0 = y * log2(m), t1 = y * e

        t_cond = e < 0

        # e_y ~ e * y
        e_f = Conversion(e, precision=self.precision)
        #t0 = Select(t_cond, (e_f + log_approx) * vy, Multiplication(e_f, vy), tag="t0")
        #NearestInteger(t0, precision=self.precision, tag="t0_int")

        EY = NearestInteger(e_f * vy, tag="EY", precision=self.precision)
        LY = NearestInteger(log_approx * vy, tag="LY", precision=self.precision)
        t0_int = Select(t_cond, EY + LY, EY, tag="t0_int")
        t0_frac = Select(t_cond, FMA(e_f, vy, -EY) + FMA(log_approx, vy, -LY) ,EY - t0_int, tag="t0_frac")
        #t0_frac.set_attributes(tag="t0_frac")

        ml_exp2_args = ML_Exp2.get_default_args(precision=self.precision)
        ml_exp2 = ML_Exp2(ml_exp2_args)

        exp2_t0_frac = ml_exp2.generate_scalar_scheme(t0_frac, inline_select=True)
        exp2_t0_frac.set_attributes(tag="exp2_t0_frac", debug=debug_multi)

        exp2_t0_int = ExponentInsertion(Conversion(t0_int, precision=int_precision), precision=self.precision, tag="exp2_t0_int")

        t1 = Select(t_cond, Constant(0, precision=self.precision), r)
        exp2_t1 = ml_exp2.generate_scalar_scheme(t1, inline_select=True)
        exp2_t1.set_attributes(tag="exp2_t1", debug=debug_multi)

        result_sign = Constant(1.0, precision=self.precision) # Select(n_is_odd, CopySign(vx, Constant(1.0, precision=self.precision)), 1)

        y_int = NearestInteger(vy, precision=self.precision)
        y_is_integer = Equal(y_int, vy)
        y_is_even = LogicalOr(
            # if y is a number (exc. inf) greater than 2**mantissa_size * 2,
            # then it is an integer multiple of 2 => even
            Abs(vy) >= 2**(self.precision.get_mantissa_size()+1),
            LogicalAnd(
                y_is_integer and Abs(vy) < 2**(self.precision.get_mantissa_size()+1),
                # we want to limit the modulo computation to an integer input
                Equal(Modulo(Conversion(y_int, precision=int_precision), 2), 0)
            )
        )
        y_is_odd = LogicalAnd(
            LogicalAnd(
                Abs(vy) < 2**(self.precision.get_mantissa_size()+1),
                y_is_integer
            ),
            Equal(Modulo(Conversion(y_int, precision=int_precision), 2), 1)
        )


        # special cases management
        special_case_results = Statement(
            # x is sNaN OR y is sNaN
            ConditionBlock(
                LogicalOr(Test(vx, specifier=Test.IsSignalingNaN), Test(vy, specifier=Test.IsSignalingNaN)),
                Return(FP_QNaN(self.precision))
            ),
            # pow(x, ±0) is 1 if x is not a signaling NaN
            ConditionBlock(
                Test(vy, specifier=Test.IsZero),
                Return(Constant(1.0, precision=self.precision))
            ),
            # pow(±0, y) is ±∞ and signals the divideByZero exception for y an odd integer <0
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(y_is_odd, vy < 0)),
                Return(Select(Test(vx, specifier=Test.IsPositiveZero), FP_PlusInfty(self.precision), FP_MinusInfty(self.precision))),
            ),
            # pow(±0, −∞) is +∞ with no exception
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), Test(vy, specifier=Test.IsNegativeInfty)),
                Return(FP_MinusInfty(self.precision)),
            ),
            # pow(±0, +∞) is +0 with no exception
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), Test(vy, specifier=Test.IsPositiveInfty)),
                Return(FP_PlusInfty(self.precision)),
            ),
            # pow(±0, y) is ±0 for finite y>0 an odd integer
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(y_is_odd, vy > 0)),
                Return(vx),
            ),
            # pow(−1, ±∞) is 1 with no exception
            ConditionBlock(
                LogicalAnd(Equal(vx, -1), Test(vy, specifier=Test.IsInfty)),
                Return(Constant(1.0, precision=self.precision)),
            ),
            # pow(+1, y) is 1 for any y (even a quiet NaN)
            ConditionBlock(
                vx == 1,
                Return(Constant(1.0, precision=self.precision)),
            ),
            # pow(x, +∞) is +0 for −1<x<1
            ConditionBlock(
                LogicalAnd(Abs(vx) < 1, Test(vy, specifier=Test.IsPositiveInfty)),
                Return(FP_PlusZero(self.precision))
            ),
            # pow(x, +∞) is +∞ for x<−1 or for 1<x (including ±∞)
            ConditionBlock(
                LogicalAnd(Abs(vx) > 1, Test(vy, specifier=Test.IsPositiveInfty)),
                Return(FP_PlusInfty(self.precision))
            ),
            # pow(x, −∞) is +∞ for −1<x<1
            ConditionBlock(
                LogicalAnd(Abs(vx) < 1, Test(vy, specifier=Test.IsNegativeInfty)),
                Return(FP_PlusInfty(self.precision))
            ),
            # pow(x, −∞) is +0 for x<−1 or for 1<x (including ±∞)
            ConditionBlock(
                LogicalAnd(Abs(vx) > 1, Test(vy, specifier=Test.IsNegativeInfty)),
                Return(FP_PlusZero(self.precision))
            ),
            # pow(+∞, y) is +0 for a number y < 0
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsPositiveInfty), vy < 0),
                Return(FP_PlusZero(self.precision))
            ),
            # pow(+∞, y) is +∞ for a number y > 0
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsPositiveInfty), vy > 0),
                Return(FP_PlusInfty(self.precision))
            ),
            # pow(−∞, y) is −0 for finite y < 0 an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(y_is_odd, vy < 0)),
                Return(FP_MinusZero(self.precision)),
            ),
            # pow(−∞, y) is −∞ for finite y > 0 an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(y_is_odd, vy > 0)),
                Return(FP_MinusInfty(self.precision)),
            ),
            # pow(−∞, y) is +0 for finite y < 0 and not an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(LogicalNot(y_is_odd), vy < 0)),
                Return(FP_PlusZero(self.precision)),
            ),
            # pow(−∞, y) is +∞ for finite y > 0 and not an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(LogicalNot(y_is_odd), vy > 0)),
                Return(FP_PlusInfty(self.precision)),
            ),
            # pow(±0, y) is +∞ and signals the divideByZero exception for finite y<0 and not an odd integer
            # TODO: signal divideByZero exception
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(LogicalNot(y_is_odd), vy < 0)),
                Return(FP_PlusInfty(self.precision)),
            ),
            # pow(±0, y) is +0 for finite y>0 and not an odd integer
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(LogicalNot(y_is_odd), vy > 0)),
                Return(FP_PlusZero(self.precision)),
            ),
        )

        # manage n=1 separately to avoid catastrophic propagation of errors
        # between log2 and exp2 to eventually compute the identity function
        # test-case #3
        result = Statement(
            special_case_results,
            # fallback default cases
            Return(result_sign * exp2_t1 * exp2_t0_int * exp2_t0_frac))
        return result
Ejemplo n.º 9
0
    def numeric_emulate(self, vx, vy):
        """ Numeric emulation of pow """

        if is_snan(vx) or is_snan(vy):
            return FP_QNaN(self.precision)
        # pow(x, ±0) is 1 if x is not a signaling NaN
        if is_zero(vy):
            return 1.0
        # pow(±0, y) is ±∞ and signals the divideByZero exception for y an odd integer <0
        if is_plus_zero(vx) and not is_special_value(vy) and (int(vy) == vy) and (int(vy) % 2 == 1) and vy < 0:
            return FP_PlusInfty(self.precision)
        if is_minus_zero(vx) and not is_special_value(vy) and (int(vy) == vy) and (int(vy) % 2 == 1) and vy < 0:
            return FP_MinusInfty(self.precision)
        # pow(±0, −∞) is +∞ with no exception
        if is_zero(vx) and is_minus_zero(vy):
            return FP_MinusInfty(self.precision)
        # pow(±0, +∞) is +0 with no exception
        if is_zero(vx) and is_plus_zero(vy):
            return FP_PlusZero(self.precision)
        # pow(±0, y) is ±0 for finite y>0 an odd integer
        if is_zero(vx) and not is_special_value(vy) and (int(vy) == vy) and (int(vy) % 2 == 1) and vy > 0:
            return vx
        # pow(−1, ±∞) is 1 with no exception
        if vx == -1.0 and is_infty(vy):
            return 1
        # pow(+1, y) is 1 for any y (even a quiet NaN)
        if vx == 1.0:
            return 1.0
        # pow(x, +∞) is +0 for −1<x<1
        if -1 < vx < 1 and is_plus_infty(vy):
            return FP_PlusZero(self.precision)
        # pow(x, +∞) is +∞ for x<−1 or for 1<x (including ±∞)
        if (vx < -1 or vx > 1) and is_plus_infty(vy):
            return FP_PlusInfty(self.precision)
        # pow(x, −∞) is +∞ for −1<x<1
        if -1 < vx < 1 and is_minus_infty(vy):
            return FP_PlusInfty(self.precision)
        # pow(x, −∞) is +0 for x<−1 or for 1<x (including ±∞)
        if is_minus_infty(vy) and (vx < -1 or vx > 1):
            return FP_PlusZero(self.precision)
        # pow(+∞, y) is +0 for a number y < 0
        if is_plus_infty(vx) and vy < 0:
            return FP_PlusZero(self.precision)
        # pow(+∞, y) is +∞ for a number y > 0
        if is_plus_infty(vx) and vy > 0:
            return FP_PlusInfty(self.precision)
        # pow(−∞, y) is −0 for finite y < 0 an odd integer
        if is_minus_infty(vx) and vy < 0 and not is_special_value(vy) and int(vy) == vy and int(vy) % 2 == 1:
            return FP_MinusZero(self.precision)
        # pow(−∞, y) is −∞ for finite y > 0 an odd integer
        if is_minus_infty(vx) and vy > 0 and not is_special_value(vy) and  int(vy) == vy and int(vy) % 2 == 1:
            return FP_MinusInfty(self.precision)
        # pow(−∞, y) is +0 for finite y < 0 and not an odd integer
        if is_minus_infty(vx) and vy < 0 and not is_special_value(vy) and not(int(vy) == vy and int(vy) % 2 == 1):
            return FP_PlusZero(self.precision)
        # pow(−∞, y) is +∞ for finite y > 0 and not an odd integer
        if is_minus_infty(vx) and vy > 0 and not is_special_value(vy) and not(int(vy) == vy and int(vy) % 2 == 1):
            return FP_PlusInfty(self.precision)
        # pow(±0, y) is +∞ and signals the divideByZero exception for finite y<0 and not an odd integer
        if is_zero(vx) and vy < 0 and not is_special_value(vy) and not(int(vy) == vy and int(vy) % 2 == 1):
            return FP_PlusInfty(self.precision)
        # pow(±0, y) is +0 for finite y>0 and not an odd integer
        if is_zero(vx) and vy > 0 and not is_special_value(vy) and not(int(vy) == vy and int(vy) % 2 == 1):
            return FP_PlusZero(self.precision)
        # TODO
        # pow(x, y) signals the invalid operation exception for finite x<0 and finite non-integer y.
        return sollya.SollyaObject(vx)**sollya.SollyaObject(vy)
Ejemplo n.º 10
0
    def generate_scheme(self):
        # We wish to compute vx / vy
        vx = self.implementation.add_input_variable(
            "x", self.precision, interval=self.input_intervals[0])
        vy = self.implementation.add_input_variable(
            "y", self.precision, interval=self.input_intervals[1])

        # maximum exponent magnitude (to avoid overflow/ underflow during
        # intermediary computations
        int_prec = self.precision.get_integer_format()
        max_exp_mag = Constant(self.precision.get_emax() - 1,
                               precision=int_prec)

        exact_ex = ExponentExtraction(vx,
                                      tag="exact_ex",
                                      precision=int_prec,
                                      debug=debug_multi)
        exact_ey = ExponentExtraction(vy,
                                      tag="exact_ey",
                                      precision=int_prec,
                                      debug=debug_multi)

        ex = Max(Min(exact_ex, max_exp_mag, precision=int_prec),
                 -max_exp_mag,
                 tag="ex",
                 precision=int_prec)
        ey = Max(Min(exact_ey, max_exp_mag, precision=int_prec),
                 -max_exp_mag,
                 tag="ey",
                 precision=int_prec)

        Attributes.set_default_rounding_mode(ML_RoundToNearest)
        Attributes.set_default_silent(True)

        # computing the inverse square root
        init_approx = None

        scaling_factor_x = ExponentInsertion(-ex,
                                             tag="sfx_ei",
                                             precision=self.precision,
                                             debug=debug_multi)
        scaling_factor_y = ExponentInsertion(-ey,
                                             tag="sfy_ei",
                                             precision=self.precision,
                                             debug=debug_multi)

        def test_interval_out_of_bound_risk(x_range, y_range):
            """ Try to determine from x and y's interval if there is a risk
                of underflow or overflow """
            div_range = abs(x_range / y_range)
            underflow_risk = sollya.inf(div_range) < S2**(
                self.precision.get_emin_normal() + 2)
            overflow_risk = sollya.sup(div_range) > S2**(
                self.precision.get_emax() - 2)
            return underflow_risk or overflow_risk

        out_of_bound_risk = (self.input_intervals[0] is None
                             or self.input_intervals[1] is None
                             ) or test_interval_out_of_bound_risk(
                                 self.input_intervals[0],
                                 self.input_intervals[1])
        Log.report(Log.Debug,
                   "out_of_bound_risk: {}".format(out_of_bound_risk))

        # scaled version of vx and vy, to avoid overflow and underflow
        if out_of_bound_risk:
            scaled_vx = vx * scaling_factor_x
            scaled_vy = vy * scaling_factor_y
            scaled_interval = MetaIntervalList(
                [MetaInterval(Interval(-2, -1)),
                 MetaInterval(Interval(1, 2))])
            scaled_vx.set_attributes(tag="scaled_vx",
                                     debug=debug_multi,
                                     interval=scaled_interval)
            scaled_vy.set_attributes(tag="scaled_vy",
                                     debug=debug_multi,
                                     interval=scaled_interval)
            seed_interval = 1 / scaled_interval
            print("seed_interval=1/{}={}".format(scaled_interval,
                                                 seed_interval))
        else:
            scaled_vx = vx
            scaled_vy = vy
            seed_interval = 1 / scaled_vy.get_interval()

        # We need a first approximation to 1 / scaled_vy
        dummy_seed = ReciprocalSeed(EmptyOperand(precision=self.precision),
                                    precision=self.precision)

        if self.processor.is_supported_operation(dummy_seed, self.language):
            init_approx = ReciprocalSeed(scaled_vy,
                                         precision=self.precision,
                                         tag="init_approx",
                                         debug=debug_multi)

        else:
            # generate tabulated version of seed
            raise NotImplementedError

        current_approx_std = init_approx
        # correctly-rounded inverse computation
        num_iteration = self.num_iter

        Attributes.unset_default_rounding_mode()
        Attributes.unset_default_silent()

        # check if inputs are zeros
        x_zero = Test(vx,
                      specifier=Test.IsZero,
                      likely=False,
                      precision=ML_Bool)
        y_zero = Test(vy,
                      specifier=Test.IsZero,
                      likely=False,
                      precision=ML_Bool)

        comp_sign = Test(vx,
                         vy,
                         specifier=Test.CompSign,
                         tag="comp_sign",
                         debug=debug_multi)

        # check if divisor is NaN
        y_nan = Test(vy, specifier=Test.IsNaN, likely=False, precision=ML_Bool)

        # check if inputs are signaling NaNs
        x_snan = Test(vx,
                      specifier=Test.IsSignalingNaN,
                      likely=False,
                      precision=ML_Bool)
        y_snan = Test(vy,
                      specifier=Test.IsSignalingNaN,
                      likely=False,
                      precision=ML_Bool)

        # check if inputs are infinities
        x_inf = Test(vx,
                     specifier=Test.IsInfty,
                     likely=False,
                     tag="x_inf",
                     precision=ML_Bool)
        y_inf = Test(vy,
                     specifier=Test.IsInfty,
                     likely=False,
                     tag="y_inf",
                     debug=debug_multi,
                     precision=ML_Bool)

        scheme = None
        gappa_vx, gappa_vy = None, None

        # initial reciprocal approximation of 1.0 / scaled_vy
        inv_iteration_list, recp_approx = compute_reduced_reciprocal(
            init_approx, scaled_vy, self.num_iter)

        recp_approx.set_attributes(tag="recp_approx", debug=debug_multi)

        # approximation of scaled_vx / scaled_vy
        yerr_last, reduced_div_approx, div_iteration_list = compute_reduced_division(
            scaled_vx, scaled_vy, recp_approx)

        eval_error_range, div_eval_error_range = self.solve_eval_error(
            init_approx, recp_approx, reduced_div_approx, scaled_vx, scaled_vy,
            inv_iteration_list, div_iteration_list, S2**-7, seed_interval)
        eval_error = sup(abs(eval_error_range))
        recp_interval = 1 / scaled_vy.get_interval() + eval_error_range
        recp_approx.set_interval(recp_interval)

        div_interval = scaled_vx.get_interval() / scaled_vy.get_interval(
        ) + div_eval_error_range
        reduced_div_approx.set_interval(div_interval)
        reduced_div_approx.set_tag("reduced_div_approx")

        if out_of_bound_risk:
            unscaled_result = scaling_div_result(reduced_div_approx, ex,
                                                 scaling_factor_y,
                                                 self.precision)

            subnormal_result = subnormalize_result(recp_approx,
                                                   reduced_div_approx, ex, ey,
                                                   yerr_last, self.precision)
        else:
            unscaled_result = reduced_div_approx
            subnormal_result = reduced_div_approx

        x_inf_or_nan = Test(vx, specifier=Test.IsInfOrNaN, likely=False)
        y_inf_or_nan = Test(vy,
                            specifier=Test.IsInfOrNaN,
                            likely=False,
                            tag="y_inf_or_nan",
                            debug=debug_multi)

        # generate IEEE exception raising only of libm-compliant
        # mode is enabled
        enable_raise = self.libm_compliant

        # managing special cases
        # x inf and y inf
        pre_scheme = ConditionBlock(
            x_inf_or_nan,
            ConditionBlock(
                x_inf,
                ConditionBlock(
                    y_inf_or_nan,
                    Statement(
                        # signaling NaNs raise invalid operation flags
                        ConditionBlock(y_snan, Raise(ML_FPE_Invalid))
                        if enable_raise else Statement(),
                        Return(FP_QNaN(self.precision)),
                    ),
                    ConditionBlock(comp_sign,
                                   Return(FP_MinusInfty(self.precision)),
                                   Return(FP_PlusInfty(self.precision)))),
                Statement(
                    ConditionBlock(x_snan, Raise(ML_FPE_Invalid))
                    if enable_raise else Statement(),
                    Return(FP_QNaN(self.precision)))),
            ConditionBlock(
                x_zero,
                ConditionBlock(
                    LogicalOr(y_zero, y_nan, precision=ML_Bool),
                    Statement(
                        ConditionBlock(y_snan, Raise(ML_FPE_Invalid))
                        if enable_raise else Statement(),
                        Return(FP_QNaN(self.precision))), Return(vx)),
                ConditionBlock(
                    y_inf_or_nan,
                    ConditionBlock(
                        y_inf,
                        Return(
                            Select(comp_sign, FP_MinusZero(self.precision),
                                   FP_PlusZero(self.precision))),
                        Statement(
                            ConditionBlock(y_snan, Raise(ML_FPE_Invalid))
                            if enable_raise else Statement(),
                            Return(FP_QNaN(self.precision)))),
                    ConditionBlock(
                        y_zero,
                        Statement(
                            Raise(ML_FPE_DivideByZero)
                            if enable_raise else Statement(),
                            ConditionBlock(
                                comp_sign,
                                Return(FP_MinusInfty(self.precision)),
                                Return(FP_PlusInfty(self.precision)))),
                        # managing numerical value result cases
                        Statement(
                            recp_approx,
                            reduced_div_approx,
                            ConditionBlock(
                                Test(unscaled_result,
                                     specifier=Test.IsSubnormal,
                                     likely=False),
                                # result is subnormal
                                Statement(
                                    # inexact flag should have been raised when computing yerr_last
                                    # ConditionBlock(
                                    #    Comparison(
                                    #        yerr_last, 0,
                                    #        specifier=Comparison.NotEqual, likely=True),
                                    #    Statement(Raise(ML_FPE_Inexact, ML_FPE_Underflow))
                                    #),
                                    Return(subnormal_result), ),
                                # result is normal
                                Statement(
                                    # inexact flag should have been raised when computing yerr_last
                                    #ConditionBlock(
                                    #    Comparison(
                                    #        yerr_last, 0,
                                    #        specifier=Comparison.NotEqual, likely=True),
                                    #    Raise(ML_FPE_Inexact)
                                    #),
                                    Return(unscaled_result))),
                        )))))
        # managing rounding mode save and restore
        # to ensure intermediary computations are performed in round-to-nearest
        # clearing exception before final computation

        #rnd_mode = GetRndMode()
        #scheme = Statement(
        #    rnd_mode,
        #    SetRndMode(ML_RoundToNearest),
        #    yerr_last,
        #    SetRndMode(rnd_mode),
        #    unscaled_result,
        #    ClearException(),
        #    pre_scheme
        #)

        scheme = pre_scheme

        return scheme
Ejemplo n.º 11
0
    def generate_scalar_scheme(self, vx, n):
        # fixing inputs' node tag
        vx.set_attributes(tag="x")
        n.set_attributes(tag="n")

        int_precision = self.precision.get_integer_format()

        # assuming x = m.2^e (m in [1, 2[)
        #          n, positive or null integers
        #
        # rootn(x, n) = x^(1/n)
        #             = exp(1/n * log(x))
        #             = 2^(1/n * log2(x))
        #             = 2^(1/n * (log2(m) + e))
        #

        # approximation log2(m)

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision=self.precision)
        dummy_div_seed = ReciprocalSeed(dummy_var, precision=self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed,
            language=None,
            table_getter=lambda self: self.approx_table_map)

        log_f = sollya.log(sollya.x)  # /sollya.log(self.basis)

        use_reciprocal = False

        # non-scaled vx used to compute vx^1
        unmodified_vx = vx

        is_subnormal = Test(vx, specifier=Test.IsSubnormal, tag="is_subnormal")
        exp_correction_factor = self.precision.get_mantissa_size()
        mantissa_factor = Constant(2**exp_correction_factor,
                                   tag="mantissa_factor")
        vx = Select(is_subnormal, vx * mantissa_factor, vx, tag="corrected_vx")

        m = MantissaExtraction(vx, tag="m", precision=self.precision)
        e = ExponentExtraction(vx, tag="e", precision=int_precision)
        e = Select(is_subnormal,
                   e - exp_correction_factor,
                   e,
                   tag="corrected_e")

        ml_log_args = ML_GenericLog.get_default_args(precision=self.precision,
                                                     basis=2)
        ml_log = ML_GenericLog(ml_log_args)
        log_table, log_table_tho, table_index_range = ml_log.generate_log_table(
            log_f, inv_approx_table)
        log_approx = ml_log.generate_reduced_log_split(
            Abs(m, precision=self.precision), log_f, inv_approx_table,
            log_table)
        # floating-point version of n
        n_f = Conversion(n, precision=self.precision, tag="n_f")
        inv_n = Division(Constant(1, precision=self.precision), n_f)

        log_approx = Select(Equal(vx, 0), FP_MinusInfty(self.precision),
                            log_approx)
        log_approx.set_attributes(tag="log_approx", debug=debug_multi)
        if use_reciprocal:
            r = Multiplication(log_approx, inv_n, tag="r", debug=debug_multi)
        else:
            r = Division(log_approx, n_f, tag="r", debug=debug_multi)

        # e_n ~ e / n
        e_f = Conversion(e, precision=self.precision, tag="e_f")
        if use_reciprocal:
            e_n = Multiplication(e_f, inv_n, tag="e_n")
        else:
            e_n = Division(e_f, n_f, tag="e_n")
        error_e_n = FMA(e_n, -n_f, e_f, tag="error_e_n")
        e_n_int = NearestInteger(e_n, precision=self.precision, tag="e_n_int")
        pre_e_n_frac = e_n - e_n_int
        pre_e_n_frac.set_attributes(tag="pre_e_n_frac")
        e_n_frac = pre_e_n_frac + error_e_n * inv_n
        e_n_frac.set_attributes(tag="e_n_frac")

        ml_exp2_args = ML_Exp2.get_default_args(precision=self.precision)
        ml_exp2 = ML_Exp2(ml_exp2_args)
        exp2_r = ml_exp2.generate_scalar_scheme(r, inline_select=True)
        exp2_r.set_attributes(tag="exp2_r", debug=debug_multi)

        exp2_e_n_frac = ml_exp2.generate_scalar_scheme(e_n_frac,
                                                       inline_select=True)
        exp2_e_n_frac.set_attributes(tag="exp2_e_n_frac", debug=debug_multi)

        exp2_e_n_int = ExponentInsertion(Conversion(e_n_int,
                                                    precision=int_precision),
                                         precision=self.precision,
                                         tag="exp2_e_n_int")

        n_is_even = Equal(Modulo(n, 2), 0, tag="n_is_even", debug=debug_multi)
        n_is_odd = LogicalNot(n_is_even, tag="n_is_odd")
        result_sign = Select(
            n_is_odd, CopySign(vx, Constant(1.0, precision=self.precision)), 1)

        # managing n == -1
        if self.expand_div:
            ml_division_args = ML_Division.get_default_args(
                precision=self.precision, input_formats=[self.precision] * 2)
            ml_division = ML_Division(ml_division_args)
            self.division_implementation = ml_division.implementation
            self.division_implementation.set_scheme(
                ml_division.generate_scheme())
            ml_division_fct = self.division_implementation.get_function_object(
            )
        else:
            ml_division_fct = Division

        # manage n=1 separately to avoid catastrophic propagation of errors
        # between log2 and exp2 to eventually compute the identity function
        # test-case #3
        result = ConditionBlock(
            LogicalOr(LogicalOr(Test(vx, specifier=Test.IsNaN), Equal(n, 0)),
                      LogicalAnd(n_is_even, vx < 0)),
            Return(FP_QNaN(self.precision)),
            Statement(
                ConditionBlock(
                    Equal(n, -1, tag="n_is_mone"),
                    #Return(Division(Constant(1, precision=self.precision), unmodified_vx, tag="div_res", precision=self.precision)),
                    Return(
                        ml_division_fct(Constant(1, precision=self.precision),
                                        unmodified_vx,
                                        tag="div_res",
                                        precision=self.precision)),
                ),
                ConditionBlock(
                    # rootn( ±inf, n) is +∞ for even n< 0.
                    Test(vx, specifier=Test.IsInfty),
                    Statement(
                        ConditionBlock(
                            n < 0,
                            #LogicalAnd(n_is_odd, n < 0),
                            Return(
                                Select(Test(vx,
                                            specifier=Test.IsPositiveInfty),
                                       Constant(FP_PlusZero(self.precision),
                                                precision=self.precision),
                                       Constant(FP_MinusZero(self.precision),
                                                precision=self.precision),
                                       precision=self.precision)),
                            Return(vx),
                        ), ),
                ),
                ConditionBlock(
                    # rootn(±0, n) is ±∞ for odd n < 0.
                    LogicalAnd(LogicalAnd(n_is_odd, n < 0),
                               Equal(vx, 0),
                               tag="n_is_odd_and_neg"),
                    Return(
                        Select(Test(vx, specifier=Test.IsPositiveZero),
                               Constant(FP_PlusInfty(self.precision),
                                        precision=self.precision),
                               Constant(FP_MinusInfty(self.precision),
                                        precision=self.precision),
                               precision=self.precision)),
                ),
                ConditionBlock(
                    # rootn( ±0, n) is +∞ for even n< 0.
                    LogicalAnd(LogicalAnd(n_is_even, n < 0), Equal(vx, 0)),
                    Return(FP_PlusInfty(self.precision))),
                ConditionBlock(
                    # rootn(±0, n) is +0 for even n > 0.
                    LogicalAnd(n_is_even, Equal(vx, 0)),
                    Return(vx)),
                ConditionBlock(
                    Equal(n, 1), Return(unmodified_vx),
                    Return(result_sign * exp2_r * exp2_e_n_int *
                           exp2_e_n_frac))))
        return result
Ejemplo n.º 12
0
    def standard_test_cases(self):
        general_list = [
            # ERROR: rootn: inf ulp error at {inf, -2}: *0x0p+0 vs. inf (0x7f800000) at index: 1226
            (FP_PlusInfty(self.precision), -2, FP_PlusZero(self.precision)),
            # ERROR: rootn: inf ulp error at {inf, -2147483648}: *0x0.0000000000000p+0 vs. inf
            (FP_PlusInfty(self.precision), -2147483648,
             FP_PlusZero(self.precision)),
            #
            (FP_PlusZero(self.precision), -1, FP_PlusInfty(self.precision)),
            (FP_MinusInfty(self.precision), 1, FP_MinusInfty(self.precision)),
            (FP_MinusInfty(self.precision), -1, FP_MinusZero(self.precision)),
            # ERROR coucou7: rootn: -inf ulp error at {inf 7f800000, 479638026}: *inf vs. 0x1.000018p+0 (0x3f80000c) at index: 2367
            (FP_PlusInfty(self.precision), 479638026,
             FP_PlusInfty(self.precision)),
            (FP_MinusInfty(self.precision), 479638026),
            #(FP_MinusInfty(self.precision), -479638026),
            #(FP_PlusInfty(self.precision), -479638026),
            # rootn( ±0, n) is ±∞ for odd n< 0.
            (FP_PlusZero(self.precision), -1337, FP_PlusInfty(self.precision)),
            (FP_MinusZero(self.precision), -1337,
             FP_MinusInfty(self.precision)),
            # rootn( ±0, n) is +∞ for even n< 0.
            (FP_PlusZero(self.precision), -1330, FP_PlusInfty(self.precision)),
            # rootn( ±0, n) is +0 for even n> 0.
            (FP_PlusZero(self.precision), random.randrange(0, 2**31, 2),
             FP_PlusZero(self.precision)),
            (FP_MinusZero(self.precision), random.randrange(0, 2**31, 2),
             FP_PlusZero(self.precision)),
            # rootn( ±0, n) is ±0 for odd n> 0.
            (FP_PlusZero(self.precision), random.randrange(1, 2**31, 2),
             FP_PlusZero(self.precision)),
            (FP_MinusZero(self.precision), random.randrange(1, 2**31, 2),
             FP_MinusZero(self.precision)),
            # rootn( x, n) returns a NaN for x< 0 and n is even.
            (-random.random(), 2 * random.randrange(1, 2**30),
             FP_QNaN(self.precision)),
            # rootn( x, 0 ) returns a NaN
            (random.random(), 0, FP_QNaN(self.precision)),
            # vx=nan
            (sollya.parse("-nan"), -1811577079, sollya.parse("nan")),
            (sollya.parse("-nan"), 832501219, sollya.parse("nan")),
            (sollya.parse("-nan"), -857435762, sollya.parse("nan")),
            (sollya.parse("-nan"), -1503049611, sollya.parse("nan")),
            (sollya.parse("-nan"), 2105620996, sollya.parse("nan")),
            #ERROR: rootn: inf ulp error at {-nan, 832501219}: *-nan vs. -0x1.00000df2bed98p+1
            #ERROR: rootn: inf ulp error at {-nan, -857435762}: *-nan vs. 0x1.0000000000000p+1
            #ERROR: rootn: inf ulp error at {-nan, -1503049611}: *-nan vs. -0x1.0000000000000p+1
            #ERROR: rootn: inf ulp error at {-nan, 2105620996}: *-nan vs. 0x1.00000583c4b7ap+1
            (sollya.parse("-0x1.cd150ap-105"), 105297051),
            (sollya.parse("0x1.ec3bf8p+71"), -1650769017),
            # test-case #12
            (0.1, 17),
            # test-case #11, fails in OpenCL CTS
            (sollya.parse("0x0.000000001d600p-1022"), 14),
            # test-case #10, fails test with dar(2**-23)
            (sollya.parse("-0x1.20aadp-114"), 17),
            # test-case #9
            (sollya.parse("0x1.a44d8ep+121"), 7),
            # test-case #8
            (sollya.parse("-0x1.3ef124p+103"), 3),
            # test-case #7
            (sollya.parse("-0x1.01047ep-2"), 39),
            # test-case #6
            (sollya.parse("-0x1.0105bp+67"), 23),
            # test-case #5
            (sollya.parse("0x1.c1f72p+51"), 6),
            # special cases
            (sollya.parse("0x0p+0"), 1),
            (sollya.parse("0x0p+0"), 0),
            # test-case #3, catastrophic error for n=1
            (sollya.parse("0x1.fc61a2p-121"), 1.0),
            # test-case #4 , k=14 < 0 not supported by bigfloat
            # (sollya.parse("0x1.ad067ap-66"), -14),
        ]
        # NOTE: expected value assumed 32-bit precision output
        fp_32_only = [
            #
            (sollya.parse("0x1.80bb0ep+70"), 377778829,
             sollya.parse("0x1.000002p+0")),
        ]
        # NOTE: the following test-case are only valid if meta-function supports 64-bit integer
        #       2nd_input
        fp_64_only = [
            (sollya.parse("0x1.fffffffffffffp+1023"), -1,
             sollya.parse("0x0.4000000000000p-1022")),
            (sollya.parse("-0x1.fffffffffffffp1023"), -1,
             sollya.parse("-0x0.4000000000000p-1022")),
            #(sollya.parse("-0x1.fffffffffffffp+1023"), 1),
            #(sollya.parse("0x1.fffffffffffffp+1023"), -1),
            # ERROR coucou8: rootn: inf ulp error at {-inf, 1854324695}: *-inf vs. -0x1.0000066bfdd60p+0
            (FP_MinusInfty(self.precision), 1854324695,
             FP_MinusInfty(self.precision)),
            # ERROR: rootn: -60.962402 ulp error at {0x0.000000001d600p-1022, 14}: *0x1.67d4ff97d1fd9p-76 vs. 0x1.67d4ff97d1f9cp-76
            (sollya.parse("0x0.000000001d600p-1022"), 14,
             sollya.parse("0x1.67d4ff97d1fd9p-76")),
            # ERROR: rootn: -430452000.000000 ulp error at {0x1.ffffffff38c00p-306, 384017876}: *0x1.ffffed870ff01p-1 vs. 0x1.ffffebec8d1d2p-1
            (sollya.parse("0x1.ffffffff38c00p-306"), 384017876,
             sollya.parse("0x1.ffffed870ff01p-1")),  # vs. 0x1.ffffebec8d1d2p-1
            # ERROR: rootn: 92996584.000000 ulp error at {0x1.ffffffffdae80p-858, -888750231}: *0x1.00000b36b1173p+0 vs. 0x1.00000b8f6155ep+0
            (sollya.parse("0x1.ffffffffdae80p-858"), -888750231,
             sollya.parse("0x1.00000b36b1173p+0")),
            # ERROR: rootn: 379474.906250 ulp error at {0x0.0000000000022p-1022, -1538297900}: *0x1.00000814a68ffp+0 vs. 0x1.0000081503352p+0
            (sollya.parse("0x0.00000006abfffp-1022"), -1221802473,
             sollya.parse("0x1.00000a01818a4p+0")),
            (sollya.parse("0x1.ffffffffd0a00p-260"), 1108043946,
             sollya.parse("0x1.fffffa9042997p-1")),
            (sollya.parse("0x1.3fffffffff1c0p-927"), -1997086266,
             sollya.parse("0x1.0000056564c5ep+0")),
            (sollya.parse("0x1.ffffffff38c00p-306"), 384017876,
             sollya.parse("0x1.ffffed870ff01p-1")),
            (sollya.parse("0x0.15c000000002ap-1022"), 740015941,
             sollya.parse("0x1.ffffdfc47b57ep-1")),
            (sollya.parse("0x0.00000000227ffp-1022"), -1859058847,
             sollya.parse("0x1.0000069c7a01bp+0")),
            (sollya.parse("0x0.0568000000012p-1022"), -447352599,
             sollya.parse("0x1.00001ab640c38p+0")),
            (sollya.parse("0x0.000000000000dp-1022"), 132283432,
             sollya.parse("0x1.ffff43d1db82ap-1")),
            (sollya.parse("-0x1.c80000000026ap+1023"), 275148531,
             sollya.parse("-0x1.00002b45a7314p+0")),
            (sollya.parse("0x0.022200000000ep-1022"), -1969769414,
             sollya.parse("0x1.000006130e858p+0")),
            (sollya.parse("0x0.0000000000011p-1022"), 851990770,
             sollya.parse("0x1.ffffe2cafaff6p-1")),
            (sollya.parse("0x1.8fffffffff348p-1010"), 526938360,
             sollya.parse("0x1.ffffd372e2b81p-1")),
            (sollya.parse("0x0.0000000000317p-1022"), -1315106194,
             sollya.parse("0x1.0000096973ac9p+0")),
            (sollya.parse("0x1.1ffffffff2d20p-971"), 378658008,
             sollya.parse("0x1.ffffc45e803b2p-1")),
            #
            (sollya.parse("0x0.0568000000012p-1022"), -447352599,
             sollya.parse("0x1.00001ab640c38p+0")),
            #
            (sollya.parse("0x1.ffffffffd0a00p-260"), 1108043946,
             sollya.parse("0x1.fffffa9042997p-1")),
            (FP_MinusZero(self.precision), -21015979,
             FP_MinusInfty(self.precision)),
            (FP_MinusZero(self.precision), -85403731,
             FP_MinusInfty(self.precision)),
            (FP_MinusZero(self.precision), -180488973,
             FP_MinusInfty(self.precision)),
            (FP_MinusZero(self.precision), -1365227287,
             FP_MinusInfty(self.precision)),
            (FP_MinusZero(self.precision), -1802885579,
             FP_MinusInfty(self.precision)),
            (FP_MinusZero(self.precision), -1681209663,
             FP_MinusInfty(self.precision)),
            (FP_MinusZero(self.precision), -1152797721,
             FP_MinusInfty(self.precision)),
            (FP_MinusZero(self.precision), -1614890585,
             FP_MinusInfty(self.precision)),
            (FP_MinusZero(self.precision), -812655517,
             FP_MinusInfty(self.precision)),
            (FP_MinusZero(self.precision), -628647891,
             FP_MinusInfty(self.precision)),
            (sollya.parse("0x1.ffffffffdae80p-858"), -888750231,
             sollya.parse("0x1.00000b36b1173p+0")),
            (sollya.parse("0x0.0568000000012p-1022"), -447352599,
             sollya.parse("0x1.00001ab640c38p+0")),
            (sollya.parse("0x0.00000006abfffp-1022"), -1221802473,
             sollya.parse("0x1.00000a01818a4p+0")),
            (sollya.parse("0x0.0000000000022p-1022"), -1538297900,
             sollya.parse("0x1.00000814a68ffp+0")),
            #ERROR: rootn: inf ulp error at {-0x0.0000000000000p+0, -1889147085}: *-inf vs. inf
            #ERROR: rootn: inf ulp error at {-0x0.0000000000000p+0, -373548013}: *-inf vs. inf
            (FP_MinusZero(self.precision), -1889147085,
             FP_MinusInfty(self.precision)),
            (FP_MinusZero(self.precision), -373548013,
             FP_MinusInfty(self.precision)),
            #ERROR: rootn: inf ulp error at {-0x0.0000000000000p+0, -1889147085}: *-inf vs. inf
            #ERROR: rootn: inf ulp error at {-0x0.0000000000000p+0, -373548013}: *-inf vs. inf
            # [email protected]: PE 0: error[84]: ml_rootn(-0x1.b1a6765727e72p-902, -7.734955e+08/-773495525), result is -0x1.00000d8cb5b3cp+0 vs expected [nan;nan]
            (sollya.parse("-0x1.b1a6765727e72p-902"), -773495525),
            # ERROR: rootn: -40564819207303340847894502572032.000000 ulp error at {-0x0.fffffffffffffp-1022, 1}: *-0x0.fffffffffffffp-1022 vs. -0x1.ffffffffffffep-970
            (sollya.parse("-0x0.fffffffffffffp-1022 "), 1,
             sollya.parse("-0x0.fffffffffffffp-1022 ")),
            # ERROR: rootn: 1125899906842624.000000 ulp error at {-0x1.fffffffffffffp+1023, -1}: *-0x0.4000000000000p-1022 vs. -0x0.0000000000000p+0
            (sollya.parse("-0x1.fffffffffffffp+1023"), -1,
             sollya.parse("-0x0.4000000000000p-1022")),
            (sollya.parse("0x1.fffffffffffffp+1023"), -1,
             sollya.parse("0x0.4000000000000p-1022")),
        ]

        return (fp_64_only if self.precision.get_bit_size() >= 64 else []) \
               + (fp_32_only if self.precision.get_bit_size() == 32 else []) \
               + general_list
Ejemplo n.º 13
0
    def generate_scheme(self):
        # declaring target and instantiating optimization engine

        vx = self.implementation.add_input_variable("x", self.precision)
        vx.set_attributes(precision=self.precision,
                          tag="vx",
                          debug=debug_multi)
        Log.set_dump_stdout(True)

        Log.report(Log.Info,
                   "\033[33;1m Generating implementation scheme \033[0m")
        if self.debug_flag:
            Log.report(Log.Info, "\033[31;1m debug has been enabled \033[0;m")

        # local overloading of RaiseReturn operation
        def SqrtRaiseReturn(*args, **kwords):
            kwords["arg_value"] = vx
            kwords["function_name"] = self.function_name
            return RaiseReturn(*args, **kwords)

        C0 = Constant(0, precision=self.precision)
        C0_plus = Constant(FP_PlusZero(self.precision))

        test_NaN = Test(vx,
                        specifier=Test.IsNaN,
                        likely=False,
                        debug=debug_multi,
                        tag="is_NaN",
                        precision=ML_Bool)
        test_negative = Comparison(vx,
                                   C0,
                                   specifier=Comparison.Less,
                                   debug=debug_multi,
                                   tag="is_Negative",
                                   precision=ML_Bool,
                                   likely=False)

        test_zero = Comparison(vx,
                               C0_plus,
                               specifier=Comparison.Equal,
                               likely=False,
                               debug=debug_multi,
                               tag="Is_Zero",
                               precision=ML_Bool)
        test_inf = Test(vx,
                        specifier=Test.IsInfty,
                        likely=False,
                        debug=debug_multi,
                        tag="is_Inf",
                        precision=ML_Bool)
        test_NaN_or_Neg = LogicalOr(test_NaN,
                                    test_negative,
                                    precision=ML_Bool,
                                    likely=False)

        test_NaN_or_Inf = Test(vx,
                               specifier=Test.IsInfOrNaN,
                               likely=False,
                               debug=debug_multi,
                               tag="is_nan_or_inf",
                               precision=ML_Bool)
        test_negative_or_zero = Comparison(vx,
                                           C0,
                                           specifier=Comparison.LessOrEqual,
                                           debug=debug_multi,
                                           tag="is_Negative_or_zero",
                                           precision=ML_Bool,
                                           likely=False)

        test_std = LogicalNot(LogicalOr(test_NaN_or_Inf,
                                        test_negative_or_zero,
                                        precision=ML_Bool,
                                        likely=False),
                              precision=ML_Bool,
                              likely=True)

        return_PosZero = Statement(Return(FP_PlusInfty(self.precision)))
        return_NegZero = Statement(Return(FP_MinusInfty(self.precision)))
        return_NaN_or_neg = Statement(Return(FP_QNaN(self.precision)))
        return_inf = Statement(Return(C0))

        NR_init = ReciprocalSquareRootSeed(vx,
                                           precision=self.precision,
                                           tag="sqrt_seed",
                                           debug=debug_multi)
        result = compute_isqrt(vx, NR_init, self.num_iter, self.precision)

        return_non_std = ConditionBlock(
            test_NaN_or_Neg, return_NaN_or_neg,
            ConditionBlock(
                test_inf, return_inf,
                ConditionBlock(test_zero, return_PosZero, return_NegZero)))

        scheme = Statement(
            ConditionBlock(test_std, Statement(Return(result)),
                           Statement(return_non_std)))

        return scheme
Ejemplo n.º 14
0
    def generate_scheme(self):
        vx = self.implementation.add_input_variable("x",
                                                    self.get_input_precision())

        sollya_precision = self.get_input_precision().get_sollya_object()

        log_f = sollya.log(sollya.x)  # /sollya.log(self.basis)

        # local overloading of RaiseReturn operation
        def ExpRaiseReturn(*args, **kwords):
            kwords["arg_value"] = vx
            kwords["function_name"] = self.function_name
            return RaiseReturn(*args, **kwords)

        test_nan_or_inf = Test(vx,
                               specifier=Test.IsInfOrNaN,
                               likely=False,
                               debug=True,
                               tag="nan_or_inf")
        test_nan = Test(vx,
                        specifier=Test.IsNaN,
                        debug=True,
                        tag="is_nan_test")
        test_positive = Comparison(vx,
                                   0,
                                   specifier=Comparison.GreaterOrEqual,
                                   debug=True,
                                   tag="inf_sign")

        test_signaling_nan = Test(vx,
                                  specifier=Test.IsSignalingNaN,
                                  debug=True,
                                  tag="is_signaling_nan")
        return_snan = Statement(
            ExpRaiseReturn(ML_FPE_Invalid,
                           return_value=FP_QNaN(self.precision)))

        log2_hi_value = round(
            log_f(2),
            self.precision.get_field_size() -
            (self.precision.get_exponent_size() + 1), RN)
        log2_lo_value = round(
            log_f(2) - log2_hi_value, self.precision.sollya_object, RN)

        log2_hi = Constant(log2_hi_value, precision=self.precision)
        log2_lo = Constant(log2_lo_value, precision=self.precision)

        int_precision = self.precision.get_integer_format()

        vx_exp = ExponentExtraction(vx, tag="vx_exp", debug=debug_multi)

        #---------------------
        # Approximation scheme
        #---------------------
        # log10(x) = log10(m.2^e) = log10(m.2^(e-t+t))
        #           = log10(m.2^-t) + (e+t) log10(2)
        #  t = (m > sqrt(2)) ? 1 : 0  is used to avoid catastrophic cancellation
        #  when e = -1 and m ~ 2
        #
        #
        # log10(m.2^-t) = log10(m.r/r.2^-t) = log10(m.r) + log10(2^-t/r)
        #               = log10(m.r) - log10(r.2^t)
        #     where r = rcp(m) an approximation of 1/m such that r.m ~ 1

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision=self.precision)
        dummy_div_seed = ReciprocalSeed(dummy_var, precision=self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed,
            language=None,
            table_getter=lambda self: self.approx_table_map)

        # table creation
        table_index_size = inv_approx_table.index_size
        table_index_range = range(1, 2**table_index_size)
        log_table = ML_NewTable(dimensions=[2**table_index_size, 2],
                                storage_precision=self.precision)
        log_table_tho = ML_NewTable(dimensions=[2**table_index_size, 2],
                                    storage_precision=self.precision)
        log_table[0][0] = 0.0
        log_table[0][1] = 0.0
        log_table_tho[0][0] = 0.0
        log_table_tho[0][1] = 0.0
        hi_size = self.precision.get_field_size() - (
            self.precision.get_exponent_size() + 1)
        for i in table_index_range:
            #inv_value = (1.0 + (self.processor.inv_approx_table[i] / S2**9) + S2**-52) * S2**-1
            #inv_value = (1.0 + (inv_approx_table[i][0] / S2**9) ) * S2**-1
            inv_value = inv_approx_table[i]
            value_high = round(log_f(inv_value), hi_size, sollya.RN)
            value_low = round(
                log_f(inv_value) - value_high, sollya_precision, sollya.RN)
            log_table[i][0] = value_high
            log_table[i][1] = value_low

            inv_value_tho = S2 * inv_approx_table[i]
            value_high_tho = round(log_f(inv_value_tho), hi_size, sollya.RN)
            value_low_tho = round(
                log_f(inv_value_tho) - value_high_tho, sollya_precision,
                sollya.RN)
            log_table_tho[i][0] = value_high_tho
            log_table_tho[i][1] = value_low_tho

        # determining log_table range
        high_index_function = lambda table, i: table[i][0]
        low_index_function = lambda table, i: table[i][1]
        table_high_interval = log_table.get_subset_interval(
            high_index_function, table_index_range)
        table_low_interval = log_table.get_subset_interval(
            low_index_function, table_index_range)

        def compute_log(_vx, exp_corr_factor=None):
            _vx_mant = MantissaExtraction(_vx,
                                          tag="_vx_mant",
                                          precision=self.precision,
                                          debug=debug_multi)
            _vx_exp = ExponentExtraction(_vx, tag="_vx_exp", debug=debug_multi)

            table_index = inv_approx_table.index_function(_vx_mant)

            table_index.set_attributes(tag="table_index", debug=debug_multi)

            tho_cond = _vx_mant > Constant(sollya.sqrt(2),
                                           precision=self.precision)
            tho = Select(tho_cond,
                         Constant(1.0, precision=self.precision),
                         Constant(0.0, precision=self.precision),
                         precision=self.precision,
                         tag="tho",
                         debug=debug_multi)

            rcp = ReciprocalSeed(_vx_mant, precision=self.precision, tag="rcp")
            r = Multiplication(rcp,
                               _vx_mant,
                               precision=self.precision,
                               tag="r")

            int_format = self.precision.get_integer_format()

            # argument reduction
            # TODO: detect if single operand inverse seed is supported by the targeted architecture
            pre_arg_red_index = TypeCast(BitLogicAnd(
                TypeCast(ReciprocalSeed(_vx_mant,
                                        precision=self.precision,
                                        tag="seed",
                                        debug=debug_multi,
                                        silent=True),
                         precision=int_format),
                Constant(-2, precision=int_format),
                precision=int_format),
                                         precision=self.precision,
                                         tag="pre_arg_red_index",
                                         debug=debug_multi)

            arg_red_index = Select(Equal(table_index, 0),
                                   1.0,
                                   pre_arg_red_index,
                                   tag="arg_red_index",
                                   debug=debug_multi)
            _red_vx = arg_red_index * _vx_mant - 1.0
            inv_err = S2**-6
            red_interval = Interval(1 - inv_err, 1 + inv_err)
            _red_vx.set_attributes(tag="_red_vx",
                                   debug=debug_multi,
                                   interval=red_interval)

            # return in case of standard (non-special) input
            _log_inv_lo = Select(tho_cond,
                                 TableLoad(log_table_tho, table_index, 1),
                                 TableLoad(log_table, table_index, 1),
                                 tag="log_inv_lo",
                                 debug=debug_multi)

            _log_inv_hi = Select(tho_cond,
                                 TableLoad(log_table_tho, table_index, 0),
                                 TableLoad(log_table, table_index, 0),
                                 tag="log_inv_hi",
                                 debug=debug_multi)

            Log.report(Log.Info, "building mathematical polynomial")
            approx_interval = Interval(-inv_err, inv_err)
            poly_degree = sup(
                guessdegree(
                    log(1 + sollya.x) / sollya.x, approx_interval, S2**
                    -(self.precision.get_field_size() + 1))) + 1
            global_poly_object = Polynomial.build_from_approximation(
                log(1 + x) / x, poly_degree,
                [self.precision] * (poly_degree + 1), approx_interval,
                sollya.absolute)
            poly_object = global_poly_object.sub_poly(start_index=1)

            Log.report(Log.Info, "generating polynomial evaluation scheme")
            _poly = PolynomialSchemeEvaluator.generate_horner_scheme(
                poly_object, _red_vx, unified_precision=self.precision)
            _poly.set_attributes(tag="poly", debug=debug_multi)
            Log.report(Log.Info, poly_object.get_sollya_object())

            corr_exp = Conversion(_vx_exp if exp_corr_factor == None else
                                  _vx_exp + exp_corr_factor,
                                  precision=self.precision) + tho
            corr_exp.set_attributes(tag="corr_exp", debug=debug_multi)

            # _poly approximates log10(1+r)/r
            # _poly * red_vx approximates log10(x)

            m0h, m0l = Mul211(_red_vx, _poly)
            m0h, m0l = Add212(_red_vx, m0h, m0l)
            m0h.set_attributes(tag="m0h", debug=debug_multi)
            m0l.set_attributes(tag="m0l")
            l0_h = corr_exp * log2_hi
            l0_l = corr_exp * log2_lo
            l0_h.set_attributes(tag="l0_h")
            l0_l.set_attributes(tag="l0_l")
            rh, rl = Add222(l0_h, l0_l, m0h, m0l)
            rh.set_attributes(tag="rh0", debug=debug_multi)
            rl.set_attributes(tag="rl0", debug=debug_multi)
            rh, rl = Add222(-_log_inv_hi, -_log_inv_lo, rh, rl)
            rh.set_attributes(tag="rh", debug=debug_multi)
            rl.set_attributes(tag="rl", debug=debug_multi)

            if sollya.log(self.basis) != 1.0:
                lbh = self.precision.round_sollya_object(
                    1 / sollya.log(self.basis))
                lbl = self.precision.round_sollya_object(
                    1 / sollya.log(self.basis) - lbh)
                rh, rl = Mul222(rh, rl, lbh, lbl)
                return rh
            else:
                return rh

        result = compute_log(vx)
        result.set_attributes(tag="result", debug=debug_multi)

        if False:
            # building eval error map
            eval_error_map = {
                red_vx:
                Variable("red_vx",
                         precision=self.precision,
                         interval=red_vx.get_interval()),
                log_inv_hi:
                Variable("log_inv_hi",
                         precision=self.precision,
                         interval=table_high_interval),
                log_inv_lo:
                Variable("log_inv_lo",
                         precision=self.precision,
                         interval=table_low_interval),
                corr_exp:
                Variable("corr_exp_g",
                         precision=self.precision,
                         interval=self.precision.get_exponent_interval()),
            }
            # computing gappa error
            if is_gappa_installed():
                poly_eval_error = self.get_eval_error(result, eval_error_map)
                Log.report(Log.Info, "poly_eval_error: ", poly_eval_error)

        neg_input = Comparison(vx,
                               0,
                               likely=False,
                               specifier=Comparison.Less,
                               debug=debug_multi,
                               tag="neg_input")
        vx_nan_or_inf = Test(vx,
                             specifier=Test.IsInfOrNaN,
                             likely=False,
                             debug=debug_multi,
                             tag="nan_or_inf")
        vx_snan = Test(vx,
                       specifier=Test.IsSignalingNaN,
                       likely=False,
                       debug=debug_multi,
                       tag="snan")
        vx_inf = Test(vx,
                      specifier=Test.IsInfty,
                      likely=False,
                      debug=debug_multi,
                      tag="inf")
        vx_subnormal = Test(vx,
                            specifier=Test.IsSubnormal,
                            likely=False,
                            debug=debug_multi,
                            tag="vx_subnormal")
        vx_zero = Test(vx,
                       specifier=Test.IsZero,
                       likely=False,
                       debug=debug_multi,
                       tag="vx_zero")

        exp_mone = Equal(vx_exp,
                         -1,
                         tag="exp_minus_one",
                         debug=debug_multi,
                         likely=False)

        # exp=-1 case
        Log.report(Log.Info, "managing exp=-1 case")
        #red_vx_2 = arg_red_index * vx_mant * 0.5
        #approx_interval2 = Interval(0.5 - inv_err, 0.5 + inv_err)
        #poly_degree2 = sup(guessdegree(log(x), approx_interval2, S2**-(self.precision.get_field_size()+1))) + 1
        #poly_object2 = Polynomial.build_from_approximation(log(sollya.x), poly_degree, [self.precision]*(poly_degree+1), approx_interval2, sollya.absolute)
        #print "poly_object2: ", poly_object2.get_sollya_object()
        #poly2 = PolynomialSchemeEvaluator.generate_horner_scheme(poly_object2, red_vx_2, unified_precision = self.precision)
        #poly2.set_attributes(tag = "poly2", debug = debug_multi)
        #result2 = (poly2 - log_inv_hi - log_inv_lo)

        m100 = -100
        S2100 = Constant(S2**100, precision=self.precision)
        result_subnormal = compute_log(vx * S2100, exp_corr_factor=m100)

        # main scheme
        Log.report(Log.Info, "MDL scheme")
        pre_scheme = ConditionBlock(
            neg_input,
            Statement(ClearException(), Raise(ML_FPE_Invalid),
                      Return(FP_QNaN(self.precision))),
            ConditionBlock(
                vx_nan_or_inf,
                ConditionBlock(
                    vx_inf,
                    Statement(
                        ClearException(),
                        Return(FP_PlusInfty(self.precision)),
                    ),
                    Statement(ClearException(),
                              ConditionBlock(vx_snan, Raise(ML_FPE_Invalid)),
                              Return(FP_QNaN(self.precision)))),
                ConditionBlock(
                    vx_subnormal,
                    ConditionBlock(
                        vx_zero,
                        Statement(
                            ClearException(),
                            Raise(ML_FPE_DivideByZero),
                            Return(FP_MinusInfty(self.precision)),
                        ), Return(result_subnormal)), Return(result))))
        scheme = pre_scheme
        return scheme
Ejemplo n.º 15
0
    def generate_scalar_scheme(self, vx):

        # local overloading of RaiseReturn operation
        def ExpRaiseReturn(*args, **kwords):
            kwords["arg_value"] = vx
            kwords["function_name"] = self.function_name
            return RaiseReturn(*args, **kwords)

        test_nan_or_inf = Test(vx,
                               specifier=Test.IsInfOrNaN,
                               likely=False,
                               debug=True,
                               tag="nan_or_inf")
        test_nan = Test(vx,
                        specifier=Test.IsNaN,
                        debug=True,
                        tag="is_nan_test")
        test_positive = Comparison(vx,
                                   0,
                                   specifier=Comparison.GreaterOrEqual,
                                   debug=True,
                                   tag="inf_sign")

        test_signaling_nan = Test(vx,
                                  specifier=Test.IsSignalingNaN,
                                  debug=True,
                                  tag="is_signaling_nan")
        return_snan = Statement(
            ExpRaiseReturn(ML_FPE_Invalid,
                           return_value=FP_QNaN(self.precision)))

        int_precision = self.precision.get_integer_format()

        vx_exp = ExponentExtraction(vx,
                                    tag="vx_exp",
                                    precision=int_precision,
                                    debug=debug_multi)

        #---------------------
        # Approximation scheme
        #---------------------
        # log(x) = log(m.2^e) = log(m.2^(e-tho+tho))
        #        = log(m.2^-tho) + (e+tho) log(2)
        #  tho = (m > sqrt(2)) ? 1 : 0  is used to avoid catastrophic cancellation
        #  when e = -1 and m ~ 2
        #
        #
        # log(m.2^-tho) = log(m.r/r.2^-tho) = log(m.r) + log(2^-tho/r)
        #             = log(m.r) - log(r.2^tho)
        #     where r = rcp(m) an approximation of 1/m such that r.m ~ 1

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision=self.precision)
        dummy_div_seed = ReciprocalSeed(dummy_var, precision=self.precision)

        # table of the reciprocal approximation of the targeted processor
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed,
            language=None,
            table_getter=lambda self: self.approx_table_map)

        log_f = sollya.log(sollya.x)  # /sollya.log(self.basis)

        log_table, log_table_tho, table_index_range = self.generate_log_table(
            log_f, inv_approx_table)

        # determining log_table range
        high_index_function = lambda table, i: table[i][0]
        low_index_function = lambda table, i: table[i][1]
        table_high_interval = log_table.get_subset_interval(
            high_index_function, table_index_range)
        table_low_interval = log_table.get_subset_interval(
            low_index_function, table_index_range)

        result = self.generate_reduced_log(vx, log_f, inv_approx_table,
                                           log_table, log_table_tho)
        result.set_attributes(tag="result", debug=debug_multi)

        if False:
            # building eval error map
            eval_error_map = {
                red_vx:
                Variable("red_vx",
                         precision=self.precision,
                         interval=red_vx.get_interval()),
                log_inv_hi:
                Variable("log_inv_hi",
                         precision=self.precision,
                         interval=table_high_interval),
                log_inv_lo:
                Variable("log_inv_lo",
                         precision=self.precision,
                         interval=table_low_interval),
                corr_exp:
                Variable("corr_exp_g",
                         precision=self.precision,
                         interval=self.precision.get_exponent_interval()),
            }
            # computing gappa error
            if is_gappa_installed():
                poly_eval_error = self.get_eval_error(result, eval_error_map)
                Log.report(Log.Info, "poly_eval_error: ", poly_eval_error)

        neg_input = Comparison(vx,
                               0,
                               likely=False,
                               specifier=Comparison.Less,
                               debug=debug_multi,
                               tag="neg_input")
        vx_nan_or_inf = Test(vx,
                             specifier=Test.IsInfOrNaN,
                             likely=False,
                             debug=debug_multi,
                             tag="nan_or_inf")
        vx_snan = Test(vx,
                       specifier=Test.IsSignalingNaN,
                       likely=False,
                       debug=debug_multi,
                       tag="snan")
        vx_inf = Test(vx,
                      specifier=Test.IsInfty,
                      likely=False,
                      debug=debug_multi,
                      tag="inf")
        vx_subnormal = Test(vx,
                            specifier=Test.IsSubnormal,
                            likely=False,
                            debug=debug_multi,
                            tag="vx_subnormal")
        vx_zero = Test(vx,
                       specifier=Test.IsZero,
                       likely=False,
                       debug=debug_multi,
                       tag="vx_zero")

        exp_mone = Equal(vx_exp,
                         -1,
                         tag="exp_minus_one",
                         debug=debug_multi,
                         likely=False)

        # exp=-1 case
        Log.report(Log.Info, "managing exp=-1 case")
        #red_vx_2 = arg_red_index * vx_mant * 0.5
        #approx_interval2 = Interval(0.5 - inv_err, 0.5 + inv_err)
        #poly_degree2 = sup(guessdegree(log(x), approx_interval2, S2**-(self.precision.get_field_size()+1))) + 1
        #poly_object2 = Polynomial.build_from_approximation(log(sollya.x), poly_degree, [self.precision]*(poly_degree+1), approx_interval2, sollya.absolute)
        #print "poly_object2: ", poly_object2.get_sollya_object()
        #poly2 = PolynomialSchemeEvaluator.generate_horner_scheme(poly_object2, red_vx_2, unified_precision = self.precision)
        #poly2.set_attributes(tag = "poly2", debug = debug_multi)
        #result2 = (poly2 - log_inv_hi - log_inv_lo)

        m100 = Constant(-100, precision=int_precision)
        S2100 = Constant(S2**100, precision=self.precision)
        result_subnormal = self.generate_reduced_log(vx * S2100,
                                                     log_f,
                                                     inv_approx_table,
                                                     log_table,
                                                     log_table_tho,
                                                     exp_corr_factor=m100)

        # main scheme
        Log.report(Log.Info, "MDL scheme")
        pre_scheme = ConditionBlock(
            neg_input,
            Statement(
                ClearException(), Raise(ML_FPE_Invalid),
                Return(FP_QNaN(self.precision), precision=self.precision)),
            ConditionBlock(
                vx_nan_or_inf,
                ConditionBlock(
                    vx_inf,
                    Statement(
                        ClearException(),
                        Return(FP_PlusInfty(self.precision),
                               precision=self.precision),
                    ),
                    Statement(
                        ClearException(),
                        ConditionBlock(vx_snan, Raise(ML_FPE_Invalid)),
                        Return(FP_QNaN(self.precision),
                               precision=self.precision))),
                ConditionBlock(
                    vx_subnormal,
                    ConditionBlock(
                        vx_zero,
                        Statement(
                            ClearException(),
                            Raise(ML_FPE_DivideByZero),
                            Return(FP_MinusInfty(self.precision),
                                   precision=self.precision),
                        ), Return(result_subnormal)), Return(result))))
        scheme = pre_scheme
        return scheme
Ejemplo n.º 16
0
    def generate_scheme(self):
        #func_implementation = CodeFunction(self.function_name, output_format = self.precision)
        vx = self.implementation.add_input_variable("x",
                                                    self.get_input_precision())

        sollya_precision = self.get_input_precision().get_sollya_object()

        # local overloading of RaiseReturn operation
        def ExpRaiseReturn(*args, **kwords):
            kwords["arg_value"] = vx
            kwords["function_name"] = self.function_name
            return RaiseReturn(*args, **kwords)

        test_nan_or_inf = Test(vx,
                               specifier=Test.IsInfOrNaN,
                               likely=False,
                               debug=True,
                               tag="nan_or_inf")
        test_nan = Test(vx,
                        specifier=Test.IsNaN,
                        debug=True,
                        tag="is_nan_test")
        test_positive = Comparison(vx,
                                   0,
                                   specifier=Comparison.GreaterOrEqual,
                                   debug=True,
                                   tag="inf_sign")

        test_signaling_nan = Test(vx,
                                  specifier=Test.IsSignalingNaN,
                                  debug=True,
                                  tag="is_signaling_nan")
        return_snan = Statement(
            ExpRaiseReturn(ML_FPE_Invalid,
                           return_value=FP_QNaN(self.precision)))

        log2_hi_value = round(
            log10(2),
            self.precision.get_field_size() -
            (self.precision.get_exponent_size() + 1), RN)
        log2_lo_value = round(
            log10(2) - log2_hi_value, self.precision.sollya_object, RN)

        log2_hi = Constant(log2_hi_value, precision=self.precision)
        log2_lo = Constant(log2_lo_value, precision=self.precision)

        vx_exp = ExponentExtraction(vx, tag="vx_exp", debug=debugd)

        int_precision = self.precision.get_integer_format()

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision=self.precision)
        dummy_div_seed = DivisionSeed(dummy_var, precision=self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed,
            language=None,
            table_getter=lambda self: self.approx_table_map)

        # table creation
        table_index_size = 7
        table_index_range = range(1, 2**table_index_size)
        log_table = ML_NewTable(dimensions=[2**table_index_size, 2],
                                storage_precision=self.precision)
        log_table[0][0] = 0.0
        log_table[0][1] = 0.0
        for i in table_index_range:
            #inv_value = (1.0 + (self.processor.inv_approx_table[i] / S2**9) + S2**-52) * S2**-1
            #inv_value = (1.0 + (inv_approx_table[i][0] / S2**9) ) * S2**-1
            inv_value = inv_approx_table[i][0]
            value_high = round(
                log10(inv_value),
                self.precision.get_field_size() -
                (self.precision.get_exponent_size() + 1), sollya.RN)
            value_low = round(
                log10(inv_value) - value_high, sollya_precision, sollya.RN)
            log_table[i][0] = value_high
            log_table[i][1] = value_low

        # determining log_table range
        high_index_function = lambda table, i: table[i][0]
        low_index_function = lambda table, i: table[i][1]
        table_high_interval = log_table.get_subset_interval(
            high_index_function, table_index_range)
        table_low_interval = log_table.get_subset_interval(
            low_index_function, table_index_range)

        def compute_log(_vx, exp_corr_factor=None):
            _vx_mant = MantissaExtraction(_vx,
                                          tag="_vx_mant",
                                          debug=debug_lftolx)
            _vx_exp = ExponentExtraction(_vx, tag="_vx_exp", debug=debugd)

            table_index = BitLogicAnd(BitLogicRightShift(
                TypeCast(_vx_mant, precision=int_precision, debug=debuglx),
                self.precision.get_field_size() - 7,
                debug=debuglx),
                                      0x7f,
                                      tag="table_index",
                                      debug=debuglld)

            # argument reduction
            # TODO: detect if single operand inverse seed is supported by the targeted architecture
            pre_arg_red_index = TypeCast(BitLogicAnd(
                TypeCast(DivisionSeed(_vx_mant,
                                      precision=self.precision,
                                      tag="seed",
                                      debug=debug_lftolx,
                                      silent=True),
                         precision=ML_UInt64),
                Constant(-2, precision=ML_UInt64),
                precision=ML_UInt64),
                                         precision=self.precision,
                                         tag="pre_arg_red_index",
                                         debug=debug_lftolx)
            arg_red_index = Select(Equal(table_index, 0),
                                   1.0,
                                   pre_arg_red_index,
                                   tag="arg_red_index",
                                   debug=debug_lftolx)
            #if not processor.is_supported_operation(arg_red_index):
            #    if self.precision != ML_Binary32:
            #        arg_red_index = DivisionSeed(Conversion(_vx_mant, precision = ML_Binary32), precision = ML_Binary32,
            _red_vx = arg_red_index * _vx_mant - 1.0
            inv_err = S2**-7
            red_interval = Interval(1 - inv_err, 1 + inv_err)
            _red_vx.set_attributes(tag="_red_vx",
                                   debug=debug_lftolx,
                                   interval=red_interval)

            # return in case of standard (non-special) input
            _log_inv_lo = TableLoad(log_table,
                                    table_index,
                                    1,
                                    tag="log_inv_lo",
                                    debug=debug_lftolx)
            _log_inv_hi = TableLoad(log_table,
                                    table_index,
                                    0,
                                    tag="log_inv_hi",
                                    debug=debug_lftolx)

            print("building mathematical polynomial")
            approx_interval = Interval(-inv_err, inv_err)
            poly_degree = sup(
                guessdegree(
                    log10(1 + sollya.x) / sollya.x, approx_interval, S2**
                    -(self.precision.get_field_size() + 1))) + 1
            global_poly_object = Polynomial.build_from_approximation(
                log10(1 + x) / x, poly_degree,
                [self.precision] * (poly_degree + 1), approx_interval,
                sollya.absolute)
            poly_object = global_poly_object  #.sub_poly(start_index = 1)

            print("generating polynomial evaluation scheme")
            _poly = PolynomialSchemeEvaluator.generate_horner_scheme(
                poly_object, _red_vx, unified_precision=self.precision)
            _poly.set_attributes(tag="poly", debug=debug_lftolx)
            print(global_poly_object.get_sollya_object())

            corr_exp = Conversion(
                _vx_exp if exp_corr_factor == None else _vx_exp +
                exp_corr_factor,
                precision=self.precision)
            split_red_vx = Split(_red_vx,
                                 precision=ML_DoubleDouble,
                                 tag="split_red_vx",
                                 debug=debug_ddtolx)
            red_vx_hi = split_red_vx.hi
            red_vx_lo = split_red_vx.lo

            # result = _red_vx * poly - log_inv_hi - log_inv_lo + _vx_exp * log2_hi + _vx_exp * log2_lo
            pre_result = -_log_inv_hi + ((_red_vx * _poly +
                                          (corr_exp * log2_lo - _log_inv_lo)))
            pre_result.set_attributes(tag="pre_result", debug=debug_lftolx)
            exact_log2_hi_exp = corr_exp * log2_hi
            exact_log2_hi_exp.set_attributes(tag="exact_log2_hi_hex",
                                             debug=debug_lftolx)
            cancel_part = (corr_exp * log2_hi - _log_inv_hi)
            cancel_part.set_attributes(tag="cancel_part", debug=debug_lftolx)
            sub_part = red_vx_hi + cancel_part
            sub_part.set_attributes(tag="sub_part", debug=debug_lftolx)
            #result_one_low_part = (red_vx_hi * _poly + (red_vx_lo + (red_vx_lo * _poly + (corr_exp * log2_lo - _log_inv_lo))))
            result_one_low_part = ((red_vx_lo +
                                    (red_vx_lo * _poly +
                                     (corr_exp * log2_lo - _log_inv_lo))))
            result_one_low_part.set_attributes(tag="result_one_low_part",
                                               debug=debug_lftolx)
            _result_one = (
                (sub_part) + red_vx_hi * _poly) + result_one_low_part
            _result = exact_log2_hi_exp + pre_result
            return _result, _poly, _log_inv_lo, _log_inv_hi, _red_vx, _result_one, corr_exp

        result, poly, log_inv_lo, log_inv_hi, red_vx, new_result_one, corr_exp = compute_log(
            vx)
        result.set_attributes(tag="result", debug=debug_lftolx)
        new_result_one.set_attributes(tag="new_result_one", debug=debug_lftolx)

        # building eval error map
        eval_error_map = {
            red_vx:
            Variable("red_vx",
                     precision=self.precision,
                     interval=red_vx.get_interval()),
            log_inv_hi:
            Variable("log_inv_hi",
                     precision=self.precision,
                     interval=table_high_interval),
            log_inv_lo:
            Variable("log_inv_lo",
                     precision=self.precision,
                     interval=table_low_interval),
            corr_exp:
            Variable("corr_exp_g",
                     precision=self.precision,
                     interval=self.precision.get_exponent_interval()),
        }
        # computing gappa error
        if is_gappa_installed():
            poly_eval_error = self.get_eval_error(result, eval_error_map)
            print("poly_eval_error: ", poly_eval_error)

        neg_input = Comparison(vx,
                               0,
                               likely=False,
                               specifier=Comparison.Less,
                               debug=debugd,
                               tag="neg_input")
        vx_nan_or_inf = Test(vx,
                             specifier=Test.IsInfOrNaN,
                             likely=False,
                             debug=debugd,
                             tag="nan_or_inf")
        vx_snan = Test(vx,
                       specifier=Test.IsSignalingNaN,
                       likely=False,
                       debug=debugd,
                       tag="snan")
        vx_inf = Test(vx,
                      specifier=Test.IsInfty,
                      likely=False,
                      debug=debugd,
                      tag="inf")
        vx_subnormal = Test(vx,
                            specifier=Test.IsSubnormal,
                            likely=False,
                            debug=debugd,
                            tag="vx_subnormal")
        vx_zero = Test(vx,
                       specifier=Test.IsZero,
                       likely=False,
                       debug=debugd,
                       tag="vx_zero")

        exp_mone = Equal(vx_exp,
                         -1,
                         tag="exp_minus_one",
                         debug=debugd,
                         likely=False)
        vx_one = Equal(vx, 1.0, tag="vx_one", likely=False, debug=debugd)

        # exp=-1 case
        print("managing exp=-1 case")
        #red_vx_2 = arg_red_index * vx_mant * 0.5
        #approx_interval2 = Interval(0.5 - inv_err, 0.5 + inv_err)
        #poly_degree2 = sup(guessdegree(log(x), approx_interval2, S2**-(self.precision.get_field_size()+1))) + 1
        #poly_object2 = Polynomial.build_from_approximation(log(sollya.x), poly_degree, [self.precision]*(poly_degree+1), approx_interval2, sollya.absolute)
        #print "poly_object2: ", poly_object2.get_sollya_object()
        #poly2 = PolynomialSchemeEvaluator.generate_horner_scheme(poly_object2, red_vx_2, unified_precision = self.precision)
        #poly2.set_attributes(tag = "poly2", debug = debug_lftolx)
        #result2 = (poly2 - log_inv_hi - log_inv_lo)

        log_subtract = -log_inv_hi - log2_hi
        log_subtract.set_attributes(tag="log_subtract", debug=debug_lftolx)
        result2 = (log_subtract) + ((poly * red_vx) - (log_inv_lo + log2_lo))
        result2.set_attributes(tag="result2", debug=debug_lftolx)

        m100 = -100
        S2100 = Constant(S2**100, precision=self.precision)
        result_subnormal, _, _, _, _, _, _ = compute_log(vx * S2100,
                                                         exp_corr_factor=m100)

        print("managing close to 1.0 cases")
        one_err = S2**-7
        approx_interval_one = Interval(-one_err, one_err)
        red_vx_one = vx - 1.0
        poly_degree_one = sup(
            guessdegree(
                log10(1 + sollya.x) / sollya.x, approx_interval_one, S2**
                -(self.precision.get_field_size() + 1))) + 1
        poly_object_one = Polynomial.build_from_approximation(
            log10(1 + sollya.x) / sollya.x, poly_degree_one,
            [self.precision] * (poly_degree_one + 1), approx_interval_one,
            sollya.absolute).sub_poly(start_index=1)
        poly_one = PolynomialSchemeEvaluator.generate_horner_scheme(
            poly_object_one, red_vx_one, unified_precision=self.precision)
        poly_one.set_attributes(tag="poly_one", debug=debug_lftolx)
        result_one = red_vx_one + red_vx_one * poly_one
        cond_one = (vx < (1 + one_err)) & (vx > (1 - one_err))
        cond_one.set_attributes(tag="cond_one", debug=debugd, likely=False)

        # main scheme
        print("MDL scheme")
        pre_scheme = ConditionBlock(
            neg_input,
            Statement(ClearException(), Raise(ML_FPE_Invalid),
                      Return(FP_QNaN(self.precision))),
            ConditionBlock(
                vx_nan_or_inf,
                ConditionBlock(
                    vx_inf,
                    Statement(
                        ClearException(),
                        Return(FP_PlusInfty(self.precision)),
                    ),
                    Statement(ClearException(),
                              ConditionBlock(vx_snan, Raise(ML_FPE_Invalid)),
                              Return(FP_QNaN(self.precision)))),
                ConditionBlock(
                    vx_subnormal,
                    ConditionBlock(
                        vx_zero,
                        Statement(
                            ClearException(),
                            Raise(ML_FPE_DivideByZero),
                            Return(FP_MinusInfty(self.precision)),
                        ), Return(result_subnormal)),
                    ConditionBlock(
                        vx_one,
                        Statement(
                            ClearException(),
                            Return(FP_PlusZero(self.precision)),
                        ),
                        ConditionBlock(exp_mone, Return(result2),
                                       Return(result))
                        #ConditionBlock(cond_one,
                        #Return(new_result_one),
                        #ConditionBlock(exp_mone,
                        #Return(result2),
                        #Return(result)
                        #)
                        #)
                    ))))
        scheme = pre_scheme
        return scheme