Ejemplo n.º 1
0
df = pd.read_csv('train.csv')

tstd = TStd()
tstd_lut_ds_x = copy.deepcopy(tstd.lut_ds)

for idx, csft in enumerate(tstd_lut_ds_x.cspp_sft.data.tolist()):
    sft_cursor = idx + 1
    sft_mask = sft == sft_cursor
    start_idx = 40
    for i in tqdm.trange(start_idx, 100, desc='%s' % csft):  # ignore 01 01
        agri_l1_file_path = df.loc[df.index[i], ('l1')]
        agri_geo_file_path = df.loc[df.index[i], ('geo')]
        agri_clm_file_path = df.loc[df.index[i], ('clm')]

        l1 = FY4AAGRIL1FDIDISK4KM(agri_l1_file_path)
        clm = FY4AAGRICLM4KM(agri_clm_file_path)
        geo = FY4AAGRIL1GEODISK4KM(agri_geo_file_path)

        bt_1080 = l1.get_band_by_channel('bt_1080')

        tstd = TStd()
        x = tstd.prepare_feature(bt_1080)
        valid_mask = tstd.prepare_valid_mask(bt_1080, dem, sft, coastal_mask,
                                             space_mask)

        sft_valide_mask = np.logical_and(valid_mask, sft_mask)

        clm_array = clm.get_clm()
        label = clm_array[sft_valide_mask]
        fea = x[sft_valide_mask]
Ejemplo n.º 2
0
def main():
    parser = argparse.ArgumentParser(description='Naive Bayes Cloud Mask Algorithm for FY4A AGRI.')
    parser.add_argument('valid_csv', type=str,
                        help='valid csv with parameters')
    parser.add_argument('--sft_str', '-s', type=str,
                        help='surface type string',
                        choices=['Space', 'DeepOcean', 'ShallowOcean', 'UnfrozenLand', 'SnowLand',
                                 'Arctic', 'Antarctic', 'Desert'])
    parser.add_argument('--dn_str', '-d', type=str,
                        help='day night flag',
                        choices=['Day', ' Night', 'ALL'])
    parser.add_argument('--out', '-o', type=str,
                        help='output directory')
    args = parser.parse_args()
    logger = logging.getLogger('fy4 nb clm log')
    logger.setLevel(logging.INFO)
    ch = logging.StreamHandler()
    ch.setLevel(logging.INFO)
    formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    ch.setFormatter(formatter)
    df = pd.read_csv(args.valid_csv)
    df.dropna(inplace=True)
    df.reset_index(drop=True, inplace=True)
    ddf = df.sample(frac=0.2, replace=True, random_state=29)
    ddf.reset_index(drop=True, inplace=True)
    ddf['p_flag'] = None
    for i in tqdm.trange(len(ddf)):
        t1_str = ddf.loc[i, ('dt')]
        l1_fpath = ddf.loc[i, ('l1')]
        geo_fpath = ddf.loc[i, ('geo')]
        clm_fpath = ddf.loc[i, ('clm')]
        clm_tif = clm_fpath.replace('.NC', '.tif')
        nb_clm_tif = clm_fpath.replace('_CLM', '_NBCLM').replace('.NC', '.tif')
        save_fy4_clm_to_tiff(clm_tif, clm_fpath)
        logger.info('convert clm format!')
        c4 = os.system("/home/fy4/miniconda3/bin/python /FY4COMM/NBCLM/geo_color_fy4/__main__.py {}".format(l1_fpath))
        if c4:
            c5 = os.system(
                "/home/fy4/miniconda3/bin/python /FY4COMM/NBCLM/metesatpy/scripts/entry.py {} {} {}".format(l1_fpath,
                                                                                                            geo_fpath,
                                                                                                            nb_clm_tif))
            if c5 == 0:
                logger.info('nb clm infer complete!')
                logger.info('evaluating...')
                fy4_l1 = FY4AAGRIL1FDIDISK4KM(l1_fpath)
                fy4_geo = FY4AAGRIL1GEODISK4KM(geo_fpath)
                month = fy4_l1.start_time_stamp.month
                fy4_nav_file_path = os.path.join('/FY4COMM/NBCLM/data', 'Assist',
                                                 'fygatNAV.FengYun-4A.xxxxxxx.4km_M%.2d.h5' % month)
                fy4_nav = FY4NavFile(fy4_nav_file_path)
                sft = fy4_nav.prepare_surface_type_to_cspp()
                ref_clm = tiff.imread(clm_tif)
                obj_clm = tiff.imread(nb_clm_tif)

                sft_cursor = fy4_nav.ET_SFT_class.get(args.sft_str, None)
                if sft_cursor == 0:
                    sft_mask = sft > 0
                else:
                    sft_mask = sft == sft_cursor
                dn_flag = args.dn_str
                if dn_flag == 'Day':
                    sun_zen = fy4_geo.get_sun_zenith()
                    time_mask = np.logical_and(sft > 0, sun_zen <= 85.0)
                elif dn_flag == 'Night':
                    sun_zen = fy4_geo.get_sun_zenith()
                    time_mask = np.logical_and(sft > 0, sun_zen > 85.0)
                else:
                    time_mask = sft_mask
                final_mask = np.logical_and(sft_mask, time_mask)

                a, b, c, d = confusion(ref_clm[final_mask], obj_clm[final_mask])
                data = {'dt': [], 'a': [], 'b': [], 'c': [], 'd': []}

                data['dt'].append(t1_str)
                data['a'].append(int(a))
                data['b'].append(int(b))
                data['c'].append(int(c))
                data['d'].append(int(d))

                df = pd.DataFrame(data)
                df = data_frame_cm_metric(df)
                month_csv = os.path.join(args.out,
                                         fy4_l1.start_time_stamp.strftime(
                                             '%Y%m_{}_{}.csv'.format(args.sft_str, args.dn_str)))
                appendDFToCSV_void(df, month_csv)
                logger.info('evaluate complete!')
Ejemplo n.º 3
0
def detect_cloud_mask(agri_l1_file_path, agri_geo_file_path,
                      agri_clm_tif_path):
    fy4_l1 = FY4AAGRIL1FDIDISK4KM(agri_l1_file_path)
    fy4_geo = FY4AAGRIL1GEODISK4KM(agri_geo_file_path)
    month = fy4_l1.start_time_stamp.month

    fy4_nav_file_path = os.path.join(
        '/FY4COMM/NBCLM/data', 'Assist',
        'fygatNAV.FengYun-4A.xxxxxxx.4km_M%.2d.h5' % month)

    fy4_nav = FY4NavFile(fy4_nav_file_path)

    snow_mask = fy4_nav.get_snow_mask()
    snow_mask = snow_mask == 3
    pix_lat = fy4_nav.get_latitude()
    pix_lon = fy4_nav.get_longitude()
    dem = fy4_nav.get_dem()
    sft = fy4_nav.prepare_surface_type_to_cspp()
    coastal = fy4_nav.get_coastal()
    coastal_mask = coastal > 0
    space_mask = fy4_nav.get_space_mask(b=True)

    sun_zen = fy4_geo.get_sun_zenith()

    bt_372 = fy4_l1.get_band_by_channel('bt_372_low')
    ems_372 = fy4_l1.get_band_by_channel('ems_372')
    bt_850 = fy4_l1.get_band_by_channel('bt_850')
    bt_1080 = fy4_l1.get_band_by_channel('bt_1080')

    r = []
    # 1 TStd
    tstd = TStd(
        lut_file_path=r"/FY4COMM/NBCLM/data/LUT/T_Std_M%.2d_handfix.nc" %
        month)
    x = tstd.prepare_feature(bt_1080)
    valid_mask = tstd.prepare_valid_mask(bt_1080, dem, sft, coastal_mask,
                                         space_mask)
    ratio, prob = tstd.infer(x, sft, valid_mask, space_mask, prob=True)
    r.append(ratio)
    # 2 Bt1185
    bt1185 = Bt1185(
        lut_file_path=r"/FY4COMM/NBCLM/data/LUT/Btd_11_85_M%.2d_handfix.nc" %
        month)
    x = bt1185.prepare_feature(bt_1080, bt_850)
    valid_mask = bt1185.prepare_valid_mask(bt_1080, bt_850, sft, space_mask)
    ratio, prob = bt1185.infer(x, sft, valid_mask, space_mask, prob=True)
    r.append(ratio)
    # 3 T11
    t11 = T11(lut_file_path=r"/FY4COMM/NBCLM/data/LUT/T_11_M%.2d_handfix.nc" %
              month)
    x = t11.prepare_feature(bt_1080)
    valid_mask = t11.prepare_valid_mask(bt_1080, sft, space_mask)
    ratio, prob = t11.infer(x, sft, valid_mask, space_mask, prob=True)
    r.append(ratio)
    # 4 Btd37511Night
    btd37511 = Btd37511Night(
        lut_file_path=
        r"/FY4COMM/NBCLM/data/LUT/Btd_375_11_Night_M%.2d_handfix.nc" % month)
    x = btd37511.prepare_feature(bt_372, bt_1080)
    valid_mask = btd37511.prepare_valid_mask(bt_372, bt_1080, sft, sun_zen,
                                             space_mask)
    ratio, prob = btd37511.infer(x, sft, valid_mask, space_mask, prob=True)
    r.append(ratio)
    # 5  Tmax-T
    tmax_t = TmaxT(
        lut_file_path=r"/FY4COMM/NBCLM/data/LUT/Tmax_T_M%.2d_handfix.nc" %
        month)
    x = tmax_t.prepare_feature(bt_1080)
    valid_mask = tmax_t.prepare_valid_mask(bt_1080, dem, sft, coastal_mask,
                                           space_mask)
    ratio, prob = tmax_t.infer(x, sft, valid_mask, space_mask, prob=True)
    r.append(ratio)
    # 6  GeoColor
    geo_color_tif_path = fy4_l1.fname.replace('FDI', 'CLR').replace(
        'V0001.HDF', 'GeoColor.tif')
    geo_color = GeoColorRGB(
        lut_file_path=r"/FY4COMM/NBCLM/data/LUT/GeoColorRGB_M%.2d_handifx.nc" %
        month)
    x = geo_color.prepare_feature(geo_color_tif_path)
    valid_mask = geo_color.prepare_valid_mask(x, sft, space_mask)
    ratio, prob = geo_color.infer(x, sft, valid_mask, space_mask, prob=True)
    r.append(ratio)
    # 7  Emiss4Day
    emiss4day = Emiss375Day(
        lut_file_path=r"/FY4COMM/NBCLM/data/LUT/Emiss_375_Day_M%.2d_handifx.nc"
        % month)
    x = emiss4day.prepare_feature(ems_372)
    valid_mask = emiss4day.prepare_valid_mask(ems_372, sft, sun_zen,
                                              space_mask)
    ratio, prob = emiss4day.infer(x, sft, valid_mask, space_mask, prob=True)
    r.append(ratio)
    # 8  Emiss4Night
    emiss4night = Emiss375Night(
        lut_file_path=
        r"/FY4COMM/NBCLM/data/LUT/Emiss_375_Night_M%.2d_handifx.nc" % month)
    x = emiss4night.prepare_feature(ems_372)
    valid_mask = emiss4night.prepare_valid_mask(ems_372, sft, sun_zen,
                                                space_mask)
    ratio, prob = emiss4night.infer(x, sft, valid_mask, space_mask, prob=True)
    r.append(ratio)

    # 融合
    r_s = np.stack(r)
    r_s_p = np.prod(r_s, 0)
    prior_yes = t11.lut_ds['prior_yes'].data[sft[sft > 0] - 1]
    p = np.ma.masked_array(np.zeros(x.shape), space_mask)
    p[sft > 0] = 1.0 / (1.0 + r_s_p[sft > 0] / prior_yes - r_s_p[sft > 0])

    space_mask_i = space_mask.astype(np.int)
    dig_p = np.ones(space_mask.shape, np.uint8) * 4
    dig_p[p >= 0.9] = 0
    dig_p[np.logical_and(p >= 0.5, p < 0.9)] = 1
    dig_p[np.logical_and(p > 0.1, p < 0.5)] = 2
    dig_p[p <= 0.1] = 3
    dig_p[space_mask_i == 1] = 126
    tiff.imwrite(agri_clm_tif_path, dig_p)
    return 0
Ejemplo n.º 4
0
def main(dt, save_space):
    logger = logging.getLogger('fy4 nb clm log')
    logger.setLevel(logging.DEBUG)
    ch = logging.StreamHandler()
    ch.setLevel(logging.DEBUG)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    ch.setFormatter(formatter)

    download_command = "wget -c --ftp-user=guoxuexingNRT --ftp-password=za4158 -P {save_space} {url}"
    t1_str = dt.strftime('%Y%m%d%H%M%S')
    t2 = dt + datetime.timedelta(minutes=14, seconds=59)
    t2_str = t2.strftime('%Y%m%d%H%M%S')

    l1_file_name = 'FY4A-_AGRI--_N_DISK_1047E_L1-_FDI-_MULT_NOM_{t1_str}_{t2_str}_4000M_V0001.HDF'.format(
        t1_str=t1_str, t2_str=t2_str)
    geo_file_name = 'FY4A-_AGRI--_N_DISK_1047E_L1-_GEO-_MULT_NOM_{t1_str}_{t2_str}_4000M_V0001.HDF'.format(
        t1_str=t1_str, t2_str=t2_str)
    clm_file_name = 'FY4A-_AGRI--_N_DISK_1047E_L2-_CLM-_MULT_NOM_{t1_str}_{t2_str}_4000M_V0001.NC'.format(
        t1_str=t1_str, t2_str=t2_str)

    l1_url_prefix = dt.strftime(
        'ftp://ftp.nsmc.org.cn/FY4A/AGRI/L1/FDI/DISK/4000M/%Y/%Y%m%d/')
    geo_url_prefix = dt.strftime(
        'ftp://ftp.nsmc.org.cn/FY4A/AGRI/L1/FDI/DISK/GEO/%Y/%Y%m%d/')
    clm_url_prefix = dt.strftime(
        'ftp://ftp.nsmc.org.cn/FY4A/AGRI/L2/CLM/DISK/NOM/%Y/%Y%m%d/')

    logger.info('time cursor: %s -- %s' % (t1_str, t2_str))
    logger.info('l1 downloading!')
    c1 = os.system(
        download_command.format(save_space=save_space,
                                url=l1_url_prefix + l1_file_name))
    if c1 == 0:
        logger.info('l1 download complete!')
    else:
        logger.error('l1 download failed!')
        return -1
    logger.info('geo downloading!')
    c2 = os.system(
        download_command.format(save_space=save_space,
                                url=geo_url_prefix + geo_file_name))
    if c2 == 0:
        logger.info('geo download complete!')
    else:
        logger.error('geo download failed!')
        return -1
    logger.info('clm downloading!')
    c3 = os.system(
        download_command.format(save_space=save_space,
                                url=clm_url_prefix + clm_file_name))
    if c3 == 0:
        logger.info('clm download complete!')
    else:
        logger.error('clm download failed!')
        return -1

    l1_fpath = os.path.join(save_space, l1_file_name)
    logger.info('ploting geo color!')
    c4 = os.system(
        "/home/fy4/miniconda3/bin/python /FY4COMM/NBCLM/geo_color_fy4/__main__.py {}"
        .format(l1_fpath))
    if c4 == 0:
        logger.info('geo color complete!')
        geo_fpath = os.path.join(save_space, geo_file_name)
        clm_fpath = os.path.join(save_space, clm_file_name)
        clm_tif = clm_fpath.replace('.NC', '.tif')
        save_fy4_clm_to_tiff(clm_tif, clm_fpath)
        nb_clm_tif = clm_fpath.replace('_CLM', '_NBCLM').replace('.NC', '.tif')
        c5 = os.system(
            "/home/fy4/miniconda3/bin/python /FY4COMM/NBCLM/metesatpy/scripts/entry.py {} {} {}"
            .format(l1_fpath, geo_fpath, nb_clm_tif))
        if c5 == 0:
            logger.info('nb clm infer complete!')
            logger.info('evaluating...')
            fy4_l1 = FY4AAGRIL1FDIDISK4KM(l1_fpath)
            month = fy4_l1.start_time_stamp.month
            fy4_nav_file_path = os.path.join(
                '/FY4COMM/NBCLM/data', 'Assist',
                'fygatNAV.FengYun-4A.xxxxxxx.4km_M%.2d.h5' % month)
            fy4_nav = FY4NavFile(fy4_nav_file_path)
            sft = fy4_nav.prepare_surface_type_to_cspp()
            sft_mask = sft > 0

            ref_clm = tiff.imread(clm_tif)
            obj_clm = tiff.imread(nb_clm_tif)

            a, b, c, d = confusion(ref_clm[sft_mask], obj_clm[sft_mask])
            data = {'dt': [], 'a': [], 'b': [], 'c': [], 'd': []}

            data['dt'].append(t1_str)
            data['a'].append(int(a))
            data['b'].append(int(b))
            data['c'].append(int(c))
            data['d'].append(int(d))

            df = pd.DataFrame(data)
            df = data_frame_cm_metric(df)
            logger.debug(str(df))

            month_csv = os.path.join(save_space, dt.strftime('%Y%m.csv'))
            appendDFToCSV_void(df, month_csv)
            logger.info('evaluate complete!')
        os.remove(l1_fpath)
        os.remove(geo_fpath)
        os.remove(clm_fpath)
        os.remove(
            l1_fpath.replace('_FDI', '_CLR').replace('V0001.HDF',
                                                     'GeoColor.tif'))
        os.remove(clm_tif)
        os.remove(nb_clm_tif)