# meta data data = extract_data.object_data() # config cfg = data.cfg utils.saveConfig(cfg) hoi_mapping = data.hoi_labels # data genTrain = DataGenerator(imagesMeta=data.trainGTMeta, cfg=cfg, data_type='train', do_meta=False) # models Models = methods.AllModels(cfg, mode='train', do_hoi=True) _, _, model_hoi = Models.get_models() sys.stdout.flush() #if False: # train callbacks = [callbacks.MyModelCheckpointInterval(cfg), \ callbacks.MyLearningRateScheduler(cfg), \ callbacks.MyModelCheckpointWeightsInterval(cfg),\ callbacks.SaveLog2File(cfg), \ callbacks.PrintCallBack()] if cfg.dataset == 'TUPPMI': model_hoi.fit_generator(generator = genTrain.begin(), \ steps_per_epoch = genTrain.nb_batches, \
# Create batch generators genTrain = DataGenerator(imagesMeta=data.trainGTMeta, cfg=cfg, data_type='train', do_meta=True, mode='test') genVal = DataGenerator(imagesMeta=data.valGTMeta, cfg=cfg, data_type='val', do_meta=True, mode='test') # genTest = DataGenerator(imagesMeta = data.testGTMeta, cfg=cfg, data_type='test', do_meta=True) Models = methods.AllModels(cfg, mode='test', do_rpn=False, do_det=True, do_hoi=False) Stages = stages.AllStages(cfg, Models, obj_mapping, hoi_mapping, mode='test') # Val data evalVal = det_test.saveEvalData(genVal, Stages, cfg, obj_mapping) det_test.saveEvalResults(genVal, cfg) # Test data #evalTest = det_test.saveEvalData(genTest, Stages, cfg, obj_mapping) #det_test.saveEvalResults(evalTest, genTest, cfg)
if True: # meta data data = extract_data.object_data() # config cfg = data.cfg obj_mapping = data.class_mapping # data genTrain = DataGenerator(imagesMeta=data.trainGTMeta, cfg=cfg, data_type='train', do_meta=False) genVal = DataGenerator(imagesMeta=data.valGTMeta, cfg=cfg, data_type='val', do_meta=False) # models Models = methods.AllModels(cfg, mode='train', do_rpn='rpn' in cfg.my_results_dir, do_det='det' in cfg.my_results_dir, do_hoi='hoi' in cfg.my_results_dir) sys.stdout.flush() #if False: # Save stuff Models.save_model(only_weights=True) print('Path:', cfg.my_results_path)