Ejemplo n.º 1
0
def test_bulk_shear_no_depth():
    """Test bulk shear with observed sounding and no depth given. Issue #568."""
    data = get_upper_air_data(datetime(2016, 5, 22, 0), 'DDC')
    u, v = bulk_shear(data['pressure'], data['u_wind'],
                      data['v_wind'], heights=data['height'])
    truth = [20.225018939, 22.602359692] * units('knots')
    assert_almost_equal(u.to('knots'), truth[0], 8)
    assert_almost_equal(v.to('knots'), truth[1], 8)
Ejemplo n.º 2
0
def test_bulk_shear_no_depth():
    """Test bulk shear with observed sounding and no depth given. Issue #568."""
    data = get_upper_air_data(datetime(2016, 5, 22, 0), 'DDC')
    u, v = bulk_shear(data['pressure'], data['u_wind'],
                      data['v_wind'], height=data['height'])
    truth = [20.225018939, 22.602359692] * units('knots')
    assert_almost_equal(u.to('knots'), truth[0], 8)
    assert_almost_equal(v.to('knots'), truth[1], 8)
Ejemplo n.º 3
0
def test_bulk_shear():
    """Test bulk shear with observed sounding."""
    data = get_upper_air_data(datetime(2016, 5, 22, 0), 'DDC')
    u, v = bulk_shear(data['pressure'], data['u_wind'],
                      data['v_wind'], heights=data['height'],
                      depth=6000 * units('meter'))
    truth = [29.899581266946115, -14.389225800205509] * units('knots')
    assert_almost_equal(u.to('knots'), truth[0], 8)
    assert_almost_equal(v.to('knots'), truth[1], 8)
Ejemplo n.º 4
0
def test_bulk_shear():
    """Test bulk shear with observed sounding."""
    data = get_upper_air_data(datetime(2016, 5, 22, 0), 'DDC')
    u, v = bulk_shear(data['pressure'], data['u_wind'],
                      data['v_wind'], height=data['height'],
                      depth=6000 * units('meter'))
    truth = [29.899581266946115, -14.389225800205509] * units('knots')
    assert_almost_equal(u.to('knots'), truth[0], 8)
    assert_almost_equal(v.to('knots'), truth[1], 8)
Ejemplo n.º 5
0
def test_bulk_shear_elevated():
    """Test bulk shear with observed sounding and a base above the surface."""
    data = get_upper_air_data(datetime(2016, 5, 22, 0), 'DDC')
    u, v = bulk_shear(data['pressure'], data['u_wind'],
                      data['v_wind'], heights=data['height'],
                      bottom=data['height'][0] + 3000 * units('meter'),
                      depth=3000 * units('meter'))
    truth = [0.9655943923302139, -3.8405428777944466] * units('m/s')
    assert_almost_equal(u, truth[0], 8)
    assert_almost_equal(v, truth[1], 8)
Ejemplo n.º 6
0
def test_bulk_shear_elevated():
    """Test bulk shear with observed sounding and a base above the surface."""
    data = get_upper_air_data(datetime(2016, 5, 22, 0), 'DDC')
    u, v = bulk_shear(data['pressure'], data['u_wind'],
                      data['v_wind'], height=data['height'],
                      bottom=data['height'][0] + 3000 * units('meter'),
                      depth=3000 * units('meter'))
    truth = [0.9655943923302139, -3.8405428777944466] * units('m/s')
    assert_almost_equal(u, truth[0], 8)
    assert_almost_equal(v, truth[1], 8)
Ejemplo n.º 7
0
            gamma_water = -((T - water_temperature) / z).to('degC/km')
            df[f'{int(p.magnitude)}_hPa_Γwater'] = [gamma_water.magnitude]

        # Calculate RH
        rh = mpcalc.relative_humidity_from_dewpoint(T, Td)
        df[f'{int(p.magnitude)}_hPa_RH'] = [rh.magnitude * 100]

        # Add u and v components
        df[f'{int(p.magnitude)}_hPa_u'] = [u.magnitude]
        df[f'{int(p.magnitude)}_hPa_v'] = [v.magnitude]

        # Derive bulk shear (except at first level)
        if p != p_data[0]:
            u_shear, v_shear = mpcalc.bulk_shear(p_data,
                                                 u_data,
                                                 v_data,
                                                 bottom=p_data[0],
                                                 depth=p_data[0] - p_data[i])
            bulk_shear = mpcalc.wind_speed(u_shear, v_shear)
            df[f'{int(p_data[0].magnitude)}-{int(p.magnitude)}_hPa_shear'] = [
                bulk_shear.magnitude
            ]

    # Append to main dataset
    dataset = dataset.append(df)

# Load in model
ai_model = joblib.load('../models/LES_Band_Position_Model_KNN(n=2)_LO1_LatLon')

# Get predictions from machine learning model
predictions = pd.DataFrame()
Ejemplo n.º 8
0
 def bulk_shear(self, depth=6 * units.kilometer):
     return mpcalc.bulk_shear(self.p, self.u, self.v, self.z, depth=depth)
Ejemplo n.º 9
0
 def process_skewt(self):
     # Calculation
     index_p100 = get_pressure_level_index(self.p_i, 100)
     lcl_p, lcl_t = mpcalc.lcl(self.p_i[0], self.t_i[0], self.td_i[0])
     lfc_p, lfc_t = mpcalc.lfc(self.p_i, self.t_i, self.td_i)
     el_p, el_t = mpcalc.el(self.p_i, self.t_i, self.td_i)
     prof = mpcalc.parcel_profile(self.p_i, self.t_i[0], self.td_i[0]).to('degC')
     cape, cin = mpcalc.cape_cin(self.p_i, self.t_i, self.td_i, prof)
     mucape, mucin = mpcalc.most_unstable_cape_cin(self.p_i, self.t_i, self.td_i)
     pwat = mpcalc.precipitable_water(self.td_i, self.p_i)
     i8 = get_pressure_level_index(self.p_i, 850)
     i7 = get_pressure_level_index(self.p_i, 700)
     i5 = get_pressure_level_index(self.p_i, 500)
     theta850 = mpcalc.equivalent_potential_temperature(850 * units('hPa'), self.t_i[i8], self.td_i[i5])
     theta500 = mpcalc.equivalent_potential_temperature(500 * units('hPa'), self.t_i[i5], self.td_i[i5])
     thetadiff = theta850 - theta500
     k = self.t_i[i8] - self.t_i[i5] + self.td_i[i8] - (self.t_i[i7] - self.td_i[i7])
     a = ((self.t_i[i8] - self.t_i[i5]) - (self.t_i[i8] - self.td_i[i5]) -
         (self.t_i[i7] - self.td_i[i7]) - (self.t_i[i5] - self.td_i[i5]))
     sw = c_sweat(np.array(self.t_i[i8].magnitude), np.array(self.td_i[i8].magnitude),
                  np.array(self.t_i[i5].magnitude), np.array(self.u_i[i8].magnitude),
                  np.array(self.v_i[i8].magnitude), np.array(self.u_i[i5].magnitude),
                  np.array(self.v_i[i5].magnitude))
     si = showalter_index(self.t_i[i8], self.td_i[i8], self.t_i[i5])
     li = lifted_index(self.t_i[0], self.td_i[0], self.p_i[0], self.t_i[i5])
     srh_pos, srh_neg, srh_tot = mpcalc.storm_relative_helicity(self.u_i, self.v_i, self.alt, 1000 * units('m'))
     sbcape, sbcin = mpcalc.surface_based_cape_cin(self.p_i, self.t_i, self.td_i)
     shr6km = mpcalc.bulk_shear(self.p_i, self.u_i, self.v_i, heights=self.alt, depth=6000 * units('m'))
     wshr6km = mpcalc.wind_speed(*shr6km)
     sigtor = mpcalc.significant_tornado(sbcape, delta_height(self.p_i[0], lcl_p), srh_tot, wshr6km)[0]
     # Plotting
     self.ax.set_ylim(1050, 100)
     self.ax.set_xlim(-40, 50)
     self.plot(self.p_i, self.t_i, 'r', linewidth=1)
     self.plot(self.p_i[:self.dp_idx], self.td_i[:self.dp_idx], 'g', linewidth=1)
     self.plot_barbs(self.p_i[:index_p100], self.u_i[:index_p100] * 1.94, self.v_i[:index_p100] * 1.94)
     self.plot(lcl_p, lcl_t, 'ko', markerfacecolor='black')
     self.plot(self.p_i, prof, 'k', linewidth=2)
     if cin.magnitude < 0:
         chi = -1 * cin.magnitude
         self.shade_cin(self.p_i, self.t_i, prof)
     elif cin.magnitude > 0:
         chi = cin.magnitude
         self.shade_cin(self.p_i, self.t_i, prof)
     else:
         chi = 0.
     self.shade_cape(self.p_i, self.t_i, prof)
     self.plot_dry_adiabats(linewidth=0.5)
     self.plot_moist_adiabats(linewidth=0.5)
     self.plot_mixing_lines(linewidth=0.5)
     plt.title('Skew-T Plot \nStation: {} Time: {}'.format(self.st, self.time.strftime('%Y.%m.%d %H:%M')), fontsize=14, loc='left')
     # Add hodograph
     ax = self._fig.add_axes([0.95, 0.71, 0.17, 0.17])
     h = Hodograph(ax, component_range=50)
     h.add_grid(increment=20)
     h.plot_colormapped(self.u_i[:index_p100], self.v_i[:index_p100], self.alt[:index_p100], linewidth=1.2)
     # Annotate parameters
     # Annotate names
     namelist = ['CAPE', 'CIN', 'MUCAPE', 'PWAT', 'K', 'A', 'SWEAT', 'LCL', 'LFC', 'EL', 'SI', 'LI', 'T850-500',
                 'θse850-500', 'SRH', 'STP']
     xcor = -50
     ycor = -90
     spacing = -9
     for nm in namelist:
         ax.text(xcor, ycor, '{}: '.format(nm), fontsize=10)
         ycor += spacing
     # Annotate values
     varlist = [cape, chi, mucape, pwat, k, a, sw, lcl_p, lfc_p, el_p, si, li, self.t_i[i8] - self.t_i[i5], thetadiff,
                srh_tot, sigtor]
     xcor = 10
     ycor = -90
     for v in varlist:
         if hasattr(v, 'magnitude'):
             v = v.magnitude
         ax.text(xcor, ycor, str(np.round_(v, 2)), fontsize=10)
         ycor += spacing
     # Annotate units
     unitlist = ['J/kg', 'J/kg', 'J/kg', 'mm', '°C', '°C', '', 'hPa', 'hPa', 'hPa', '°C', '°C', '°C', '°C']
     xcor = 45
     ycor = -90
     for u in unitlist:
         ax.text(xcor, ycor, ' {}'.format(u), fontsize=10)
         ycor += spacing
Ejemplo n.º 10
0
skew.plot_barbs(p[ix], u[ix], v[ix])
skew.ax.set_ylim(1075, 100)
skew.ax.set_ylabel('Pressure (hPa)')

lcl_pressure, lcl_temperature = mpcalc.lcl(p[0], T[0], Td[0]) #LCL
pwat = mpcalc.precipitable_water(Td, p, 500 * units.hectopascal).to('in') #PWAT
cape, cin = mpcalc.most_unstable_cape_cin(p[:], T[:], Td[:]) #MUCAPE
cape_sfc, cin_sfc = mpcalc.surface_based_cape_cin(p, T, Td) #SBCAPE
prof = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC') #parcel profile
equiv_pot_temp = mpcalc.equivalent_potential_temperature(p, T, Td) #equivalent potential temperature
el_pressure, el_temperature = mpcalc.el(p, T, Td) #elevated level
lfc_pressure, lfc_temperature = mpcalc.lfc(p, T, Td) #LFC

#calculates shear
u_threekm_bulk_shear, v_threekm_bulk_shear = mpcalc.bulk_shear(p, u, v, hgt, bottom = min(hgt), depth = 3000 * units.meter)
threekm_bulk_shear = mpcalc.get_wind_speed(u_threekm_bulk_shear, v_threekm_bulk_shear)
u_onekm_bulk_shear, v_onekm_bulk_shear = mpcalc.bulk_shear(p, u, v, hgt, bottom = min(hgt), depth = 1000 * units.meter)
onekm_bulk_shear = mpcalc.get_wind_speed(u_onekm_bulk_shear, v_onekm_bulk_shear)

#shows the level of the LCL, LFC, and EL.
skew.ax.text(T[0].magnitude, p[0].magnitude + 5, str(int(np.round(T[0].to('degF').magnitude))), fontsize = 'medium', horizontalalignment = 'left', verticalalignment = 'top', color = 'red')
skew.ax.text(Td[0].magnitude, p[0].magnitude + 5, str(int(np.round(Td[0].to('degF').magnitude))), fontsize = 'medium', horizontalalignment = 'right', verticalalignment = 'top', color = 'green')
skew.ax.text(lcl_temperature.magnitude + 5, lcl_pressure.magnitude, "---- LCL", fontsize = 'medium', verticalalignment = 'center')
skew.ax.text(Td[0].magnitude - 10, p[0].magnitude, 'SFC: {}hPa ----'.format(p[0].magnitude), fontsize = 'medium', horizontalalignment = 'right', verticalalignment = 'center', color = 'black')

if str(lfc_temperature.magnitude) != 'nan': #checks to see if LFC/EL exists. If not, skip.
    skew.ax.text(lfc_temperature.magnitude + 5, lfc_pressure.magnitude, "---- LFC", fontsize = 'medium', verticalalignment = 'center')
    skew.ax.text(el_temperature.magnitude + 5, el_pressure.magnitude, "---- EL", fontsize = 'medium', verticalalignment = 'center')

skew.plot(p, prof, 'k-', linewidth=1) #plots parcel profile