Ejemplo n.º 1
0
def add_curves(ax,
               pressure,
               temperature,
               mixing_ratio,
               altitude,
               linewidth=1.0,
               LH_Tdepend=False):
    """
    overlaying new curves of multiple soundings from profiles
    """
    p = pressure * units('mbar')
    T = temperature * units('degC')
    q = mixing_ratio * units('kilogram/kilogram')
    qs = mpcalc.mixing_ratio(mpcalc.saturation_vapor_pressure(T), p)
    Td = mpcalc.dewpoint(mpcalc.vapor_pressure(p, q))  # dewpoint
    Tp = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')  # parcel profile

    # Altitude based on the hydrostatic eq.
    if len(altitude) == len(pressure):  # (1) altitudes for whole levels
        altitude = altitude * units('meter')
    elif len(altitude
             ) == 1:  # (2) known altitude where the soundings was launched
        z_surf = altitude.copy() * units('meter')
        # given altitude
        altitude = np.zeros((np.size(T))) * units('meter')
        for i in range(np.size(T)):
            altitude[i] = mpcalc.thickness_hydrostatic(
                p[:i + 1], T[:i + 1]) + z_surf  # Hypsometric Eq. for height
    else:
        print(
            '***NOTE***: the altitude at the surface is assumed 0 meter, and altitudes are derived based on the hypsometric equation'
        )
        altitude = np.zeros(
            (np.size(T))) * units('meter')  # surface is 0 meter
        for i in range(np.size(T)):
            altitude[i] = mpcalc.thickness_hydrostatic(
                p[:i + 1], T[:i + 1])  # Hypsometric Eq. for height

    # specific energies
    if LH_Tdepend == False:
        mse = mpcalc.moist_static_energy(altitude, T, q)
        mse_s = mpcalc.moist_static_energy(altitude, T, qs)
        dse = mpcalc.dry_static_energy(altitude, T)
    else:
        # A short course in cloud physics, Roger and Yau (1989)
        Lvt = (2500.8 - 2.36 * T.magnitude +
               0.0016 * T.magnitude**2 - 0.00006 * T.magnitude**3) * units(
                   'joule/gram')  # latent heat of evaporation
        #Lf = 2834.1 - 0.29*T - 0.004*T**2                  # latent heat of fusion

        mse = Cp_d * T + g * altitude + Lvt * q
        mse_s = Cp_d * T + g * altitude + Lvt * qs
        dse = mpcalc.dry_static_energy(altitude, T)

    ax.plot(dse, p, '--k', linewidth=linewidth)
    ax.plot(mse, p, '--b', linewidth=linewidth)
    ax.plot(mse_s, p, '--r', linewidth=linewidth)
Ejemplo n.º 2
0
def add_curves_Wyoming(ax, datetime, station, linewidth=1.0, LH_Tdepend=False):
    """
    overlaying new curves of multiple soundings from Wyoming datasets
    date: using datetime module. ex. datetime(2018,06,06) 
    station: station name. ex. 'MFL' Miami, Florida
    """
    from siphon.simplewebservice.wyoming import WyomingUpperAir

    date = datetime
    station = station
    df = WyomingUpperAir.request_data(date, station)
    pressure = df['pressure'].values
    Temp = df['temperature'].values
    Temp_dew = df['dewpoint'].values
    altitude = df['height'].values
    q = mpcalc.mixing_ratio(
        mpcalc.saturation_vapor_pressure(Temp_dew * units('degC')),
        pressure * units('mbar'))
    q = mpcalc.specific_humidity_from_mixing_ratio(q)
    qs = mpcalc.mixing_ratio(
        mpcalc.saturation_vapor_pressure(Temp * units('degC')),
        pressure * units('mbar'))

    # specific energies
    if LH_Tdepend == False:
        mse = mpcalc.moist_static_energy(altitude * units('meter'),
                                         Temp * units('degC'), q)
        mse_s = mpcalc.moist_static_energy(altitude * units('meter'),
                                           Temp * units('degC'), qs)
        dse = mpcalc.dry_static_energy(altitude * units('meter'),
                                       Temp * units('degC'))
    else:
        # A short course in cloud physics, Roger and Yau (1989)
        Lvt = (2500.8 - 2.36 * T.magnitude +
               0.0016 * T.magnitude**2 - 0.00006 * T.magnitude**3) * units(
                   'joule/gram')  # latent heat of evaporation
        #Lf = 2834.1 - 0.29*T - 0.004*T**2                  # latent heat of fusion

        mse = Cp_d * T + g * altitude + Lvt * q
        mse_s = Cp_d * T + g * altitude + Lvt * qs
        dse = mpcalc.dry_static_energy(altitude, T)

    # adding curves on the main axes
    ax.plot(dse.magnitude, pressure, 'k', linewidth=linewidth)
    ax.plot(mse.magnitude, pressure, 'b', linewidth=linewidth)
    ax.plot(mse_s.magnitude, pressure, 'r', linewidth=linewidth)
Ejemplo n.º 3
0
def calculate_h(tas_da, huss_da, heights, lats, lons):

    """Calculate moist static energy"""

    tas_da.attrs['units'] = 'kelvin'
    temperature = tas_da
    huss_da.attrs['units'] = 'dimensionless'
    humidity = huss_da

    m_s_e = mpcalc.moist_static_energy(heights=heights,
                                       temperature=temperature,
                                       specific_humidity=humidity).to('J/kg')
    return m_s_e
Ejemplo n.º 4
0
def msed_plots(pressure,
               temperature,
               mixing_ratio,
               h0_std=2000,
               ensemble_size=20,
               ent_rate=np.arange(0, 2, 0.05),
               entrain=False):
    """
    plotting the summarized static energy diagram with annotations and thermodynamic parameters
    """
    p = pressure * units('mbar')
    T = temperature * units('degC')
    q = mixing_ratio * units('kilogram/kilogram')
    qs = mpcalc.mixing_ratio(mpcalc.saturation_vapor_pressure(T), p)
    Td = mpcalc.dewpoint(mpcalc.vapor_pressure(p, q))  # dewpoint
    Tp = mpcalc.parcel_profile(p, T[0], Td[0]).to('degC')  # parcel profile

    # Altitude based on the hydrostatic eq.
    altitude = np.zeros((np.size(T))) * units('meter')  # surface is 0 meter
    for i in range(np.size(T)):
        altitude[i] = mpcalc.thickness_hydrostatic(
            p[:i + 1], T[:i + 1])  # Hypsometric Eq. for height

    # Static energy calculations
    mse = mpcalc.moist_static_energy(altitude, T, q)
    mse_s = mpcalc.moist_static_energy(altitude, T, qs)
    dse = mpcalc.dry_static_energy(altitude, T)

    # Water vapor calculations
    p_PWtop = max(200 * units.mbar,
                  min(p) + 1 * units.mbar)  # integrating until 200mb
    cwv = mpcalc.precipitable_water(Td, p,
                                    top=p_PWtop)  # column water vapor [mm]
    cwvs = mpcalc.precipitable_water(
        T, p, top=p_PWtop)  # saturated column water vapor [mm]
    crh = (cwv / cwvs) * 100.  # column relative humidity [%]

    #================================================
    # plotting MSE vertical profiles
    fig = plt.figure(figsize=[12, 8])
    ax = fig.add_axes([0.1, 0.1, 0.6, 0.8])
    ax.plot(dse, p, '-k', linewidth=2)
    ax.plot(mse, p, '-b', linewidth=2)
    ax.plot(mse_s, p, '-r', linewidth=2)

    # mse based on different percentages of relative humidity
    qr = np.zeros((9, np.size(qs))) * units('kilogram/kilogram')
    mse_r = qr * units('joule/kilogram')  # container
    for i in range(9):
        qr[i, :] = qs * 0.1 * (i + 1)
        mse_r[i, :] = mpcalc.moist_static_energy(altitude, T, qr[i, :])

    for i in range(9):
        ax.plot(mse_r[i, :], p[:], '-', color='grey', linewidth=0.7)
        ax.text(mse_r[i, 3].magnitude / 1000 - 1, p[3].magnitude,
                str((i + 1) * 10))

    # drawing LCL and LFC levels
    [lcl_pressure, lcl_temperature] = mpcalc.lcl(p[0], T[0], Td[0])
    lcl_idx = np.argmin(np.abs(p.magnitude - lcl_pressure.magnitude))

    [lfc_pressure, lfc_temperature] = mpcalc.lfc(p, T, Td)
    lfc_idx = np.argmin(np.abs(p.magnitude - lfc_pressure.magnitude))

    # conserved mse of air parcel arising from 1000 hpa
    mse_p = np.squeeze(np.ones((1, np.size(T))) * mse[0].magnitude)

    # illustration of CAPE
    el_pressure, el_temperature = mpcalc.el(p, T, Td)  # equilibrium level
    el_idx = np.argmin(np.abs(p.magnitude - el_pressure.magnitude))
    ELps = [el_pressure.magnitude
            ]  # Initialize an array of EL pressures for detrainment profile

    [CAPE, CIN] = mpcalc.cape_cin(p[:el_idx], T[:el_idx], Td[:el_idx],
                                  Tp[:el_idx])

    plt.plot(mse_p, p, color='green', linewidth=2)
    ax.fill_betweenx(p[lcl_idx:el_idx + 1],
                     mse_p[lcl_idx:el_idx + 1],
                     mse_s[lcl_idx:el_idx + 1],
                     interpolate=True,
                     color='green',
                     alpha='0.3')

    ax.fill_betweenx(p, dse, mse, color='deepskyblue', alpha='0.5')
    ax.set_xlabel('Specific static energies: s, h, hs [kJ kg$^{-1}$]',
                  fontsize=14)
    ax.set_ylabel('Pressure [hpa]', fontsize=14)
    ax.set_xticks([280, 300, 320, 340, 360, 380])
    ax.set_xlim([280, 390])
    ax.set_ylim(1030, 120)

    if entrain is True:
        # Depict Entraining parcels
        # Parcel mass solves dM/dz = eps*M, solution is M = exp(eps*Z)
        # M=1 at ground without loss of generality

        # Distribution of surface parcel h offsets
        H0STDEV = h0_std  # J/kg
        h0offsets = np.sort(np.random.normal(
            0, H0STDEV, ensemble_size)) * units('joule/kilogram')
        # Distribution of entrainment rates
        entrainment_rates = ent_rate / (units('km'))

        for h0offset in h0offsets:

            h4ent = mse.copy()
            h4ent[0] += h0offset

            for eps in entrainment_rates:

                M = np.exp(eps * (altitude - altitude[0])).to('dimensionless')
                # dM is the mass contribution at each level, with 1 at the origin level.
                M[0] = 0
                dM = np.gradient(M)

                # parcel mass is a  sum of all the dM's at each level
                # conserved linearly-mixed variables like h are weighted averages
                hent = np.cumsum(dM * h4ent) / np.cumsum(dM)

                # Boolean for positive buoyancy, and its topmost altitude (index) where curve is clippes
                posboy = (hent > mse_s)
                posboy[0] = True  # so there is always a detrainment level

                ELindex_ent = np.max(np.where(posboy))
                # Plot the curve
                plt.plot(hent[0:ELindex_ent + 2],
                         p[0:ELindex_ent + 2],
                         linewidth=0.25,
                         color='g')
                # Keep a list for a histogram plot (detrainment profile)
                if p[ELindex_ent].magnitude < lfc_pressure.magnitude:  # buoyant parcels only
                    ELps.append(p[ELindex_ent].magnitude)

        # Plot a crude histogram of parcel detrainment levels
        NBINS = 20
        pbins = np.linspace(1000, 150,
                            num=NBINS)  # pbins for detrainment levels
        hist = np.zeros((len(pbins) - 1))
        for x in ELps:
            for i in range(len(pbins) - 1):
                if (x < pbins[i]) & (x >= pbins[i + 1]):
                    hist[i] += 1
                    break

        det_per = hist / sum(hist) * 100
        # percentages of detrainment ensumbles at levels

        ax2 = fig.add_axes([0.705, 0.1, 0.1, 0.8], facecolor=None)
        ax2.barh(pbins[1:],
                 det_per,
                 color='lightgrey',
                 edgecolor='k',
                 height=15 * (20 / NBINS))
        ax2.set_xlim([0, max(det_per)])
        ax2.set_ylim([1030, 120])
        ax2.set_xlabel('Detrainment [%]')
        ax2.grid()
        ax2.set_zorder(2)

        ax.plot([400, 400], [1100, 0])
        ax.annotate('Detrainment', xy=(362, 320), color='dimgrey')
        ax.annotate('ensemble: ' + str(ensemble_size * len(entrainment_rates)),
                    xy=(364, 340),
                    color='dimgrey')
        ax.annotate('Detrainment', xy=(362, 380), color='dimgrey')
        ax.annotate(' scale: 0 - 2 km', xy=(365, 400), color='dimgrey')

        # Overplots on the mess: undilute parcel and CAPE, etc.
        ax.plot((1, 1) * mse[0], (1, 0) * (p[0]), color='g', linewidth=2)

        # Replot the sounding on top of all that mess
        ax.plot(mse_s, p, color='r', linewidth=1.5)
        ax.plot(mse, p, color='b', linewidth=1.5)

        # label LCL and LCF
        ax.plot((mse_s[lcl_idx] + (-2000, 2000) * units('joule/kilogram')),
                lcl_pressure + (0, 0) * units('mbar'),
                color='orange',
                linewidth=3)
        ax.plot((mse_s[lfc_idx] + (-2000, 2000) * units('joule/kilogram')),
                lfc_pressure + (0, 0) * units('mbar'),
                color='magenta',
                linewidth=3)

    ### Internal waves (100m adiabatic displacements, assumed adiabatic: conserves s, sv, h).
    #dZ = 100 *mpunits.units.meter
    dp = 1000 * units.pascal

    # depict displacements at sounding levels nearest these target levels
    targetlevels = [900, 800, 700, 600, 500, 400, 300, 200] * units.hPa
    for ilev in targetlevels:
        idx = np.argmin(np.abs(p - ilev))

        # dp: hydrostatic
        rho = (p[idx]) / Rd / (T[idx])
        dZ = -dp / rho / g

        # dT: Dry lapse rate dT/dz_dry is -g/Cp
        dT = (-g / Cp_d * dZ).to('kelvin')
        Tdisp = T[idx].to('kelvin') + dT

        # dhsat
        dqs = mpcalc.mixing_ratio(mpcalc.saturation_vapor_pressure(Tdisp),
                                  p[idx] + dp) - qs[idx]
        dhs = g * dZ + Cp_d * dT + Lv * dqs

        # Whiskers on the data plots
        ax.plot((mse_s[idx] + dhs * (-1, 1)),
                p[idx] + dp * (-1, 1),
                linewidth=3,
                color='r')
        ax.plot((dse[idx] * (1, 1)),
                p[idx] + dp * (-1, 1),
                linewidth=3,
                color='k')
        ax.plot((mse[idx] * (1, 1)),
                p[idx] + dp * (-1, 1),
                linewidth=3,
                color='b')

        # annotation to explain it
        if ilev == 400 * ilev.units:
            ax.plot(360 * mse_s.units + dhs * (-1, 1) / 1000,
                    440 * units('mbar') + dp * (-1, 1),
                    linewidth=3,
                    color='r')
            ax.annotate('+/- 10mb', xy=(362, 440), fontsize=8)
            ax.annotate(' adiabatic displacement', xy=(362, 460), fontsize=8)

    # Plot a crude histogram of parcel detrainment levels
    # Text parts
    ax.text(290, pressure[3], 'RH (%)', fontsize=11, color='k')
    ax.text(285,
            200,
            'CAPE = ' + str(np.around(CAPE.magnitude, decimals=2)) + ' [J/kg]',
            fontsize=12,
            color='green')
    ax.text(285,
            250,
            'CIN = ' + str(np.around(CIN.magnitude, decimals=2)) + ' [J/kg]',
            fontsize=12,
            color='green')
    ax.text(285,
            300,
            'LCL = ' + str(np.around(lcl_pressure.magnitude, decimals=2)) +
            ' [hpa]',
            fontsize=12,
            color='darkorange')
    ax.text(285,
            350,
            'LFC = ' + str(np.around(lfc_pressure.magnitude, decimals=2)) +
            ' [hpa]',
            fontsize=12,
            color='magenta')
    ax.text(285,
            400,
            'CWV = ' + str(np.around(cwv.magnitude, decimals=2)) + ' [mm]',
            fontsize=12,
            color='deepskyblue')
    ax.text(285,
            450,
            'CRH = ' + str(np.around(crh.magnitude, decimals=2)) + ' [%]',
            fontsize=12,
            color='blue')
    ax.legend(['DSE', 'MSE', 'SMSE'], fontsize=12, loc=1)

    ax.set_zorder(3)

    return (ax)
Ejemplo n.º 5
0
def test_moist_static_energy():
    """Test the moist static energy calculation."""
    mse = moist_static_energy(1000 * units.m, 25 * units.degC,
                              0.012 * units.dimensionless)
    assert_almost_equal(mse, 339.4594 * units('kJ/kg'), 6)
Ejemplo n.º 6
0
def test_moist_static_energy():
    """Test the moist static energy calculation."""
    mse = moist_static_energy(1000 * units.m, 25 * units.degC, 0.012 * units.dimensionless)
    assert_almost_equal(mse, 339.4594 * units('kJ/kg'), 6)