Ejemplo n.º 1
0
# Compute the Gradient Wind via an approximation
dydx = mpcalc.first_derivative(Z, delta=dx, axis=1)
d2ydx2 = mpcalc.first_derivative(dydx, delta=dx, axis=1)
R = ((1 + dydx.m**2)**(3. / 2.)) / d2ydx2.m

geo_mag = mpcalc.wind_speed(ugeo, vgeo)
grad_mag = geo_mag.m - (geo_mag.m**2) / (f.magnitude * R)

ugrad, vgrad = mpcalc.wind_components(grad_mag * units('m/s'), wdir)

# Calculate Ageostrophic wind
uageo = ugrad - ugeo
vageo = vgrad - vgeo

# Compute QVectors
uqvect, vqvect = mpcalc.q_vector(ugeo, vgeo, T * units.degC, 500 * units.hPa,
                                 dx, dy)

# Calculate divergence of the ageostrophic wind
div = mpcalc.divergence(uageo, vageo, dx, dy, dim_order='yx')

# Calculate Relative Vorticity Advection
relvor = mpcalc.vorticity(ugeo, vgeo, dx, dy, dim_order='yx')
adv = mpcalc.advection(relvor, (ugeo, vgeo), (dx, dy), dim_order='yx')

######################################################################
# Create figure containing Geopotential Heights, Temperature, Divergence
# of the Ageostrophic Wind, Relative Vorticity Advection (shaded),
# geostrphic wind barbs, and Q-vectors.
#

fig = plt.figure(figsize=(10, 10))
Ejemplo n.º 2
0
H500 = HGT_DATA.variables['hgt'][TIME_INDEX, 5, :, :]
U500 = UWND_DATA.variables['uwnd'][TIME_INDEX, 5, :, :] * units('m/s')
V500 = VWND_DATA.variables['vwnd'][TIME_INDEX, 5, :, :] * units('m/s')
DX, DY = mpcalc.lat_lon_grid_spacing(LON, LAT)
VORT500 = mpcalc.vorticity(U500, V500, DX, DY, dim_order='YX')
VORT500 = (VORT500 * (units('1/s')))
VORT_ADV500 = mpcalc.advection(VORT500, [U500, V500], (DX, DY), dim_order='yx')
# =============================================================================
# FIG #3: 700: Q-VECTORS+CONVERGENCE, GEOPOTENTIAL HEIGHT
# =============================================================================
H700 = HGT_DATA.variables['hgt'][TIME_INDEX, 3, :, :]
T700 = AIR_DATA.variables['air'][TIME_INDEX, 3, :, :] * units('kelvin')
U700 = UWND_DATA.variables['uwnd'][TIME_INDEX, 3, :, :] * units('m/s')
V700 = VWND_DATA.variables['vwnd'][TIME_INDEX, 3, :, :] * units('m/s')
PWAT = PWAT_DATA.variables['pr_wtr'][TIME_INDEX, :, :]
QVEC700 = mpcalc.q_vector(U700, V700, T700, 700 * units.mbar, DX, DY)
QC700 = mpcalc.divergence(QVEC700[0], QVEC700[1], DX, DY,
                          dim_order='yx') * (10**18)
QVECX = QVEC700[0]
QVECY = QVEC700[1]
# =============================================================================
# FIG #4: 850: GEOPOTENTIAL HEIGHT, TEMP, WINDS, TEMP-ADVECTION, FRONTOGENESIS
# =============================================================================
H850 = HGT_DATA.variables['hgt'][TIME_INDEX, 2, :, :]
T850 = AIR_DATA.variables['air'][TIME_INDEX, 2, :, :] * units('kelvin')
U850 = UWND_DATA.variables['uwnd'][TIME_INDEX, 2, :, :] * units('m/s')
V850 = VWND_DATA.variables['vwnd'][TIME_INDEX, 2, :, :] * units('m/s')
T_ADV850 = mpcalc.advection(T850 * units.kelvin, [U850, V850], (DX, DY),
                            dim_order='yx') * units('K/sec')
PT850 = mpcalc.potential_temperature(850 * units.mbar, T850)
FRONT_850 = mpcalc.frontogenesis(PT850, U850, V850, DX, DY, dim_order='YX')
            
            # Use MetPy to calculate the wind speed before smoothing, change units to knots from m/s
            sped_700 = mpcalc.wind_speed(uwnd_700, vwnd_700).to('kt')

            ## first, smooth everything pretty heavily:
            tmpk_700 = ndimage.gaussian_filter(tmpk_700, sigma=6, order=0) * units('kelvin')
            uwnd_700 = ndimage.gaussian_filter(uwnd_700, sigma=6, order=0) * units('m/s')
            vwnd_700 = ndimage.gaussian_filter(vwnd_700, sigma=6, order=0) * units('m/s')       
            
            # less smoothing for the height
            hght_700 = ndimage.gaussian_filter(hght_700, sigma=2, order=0) * units('m')
            
            if plot_700qvect:
            
                # Compute the Q-vector components
                uqvect, vqvect = mpcalc.q_vector(uwnd_700, vwnd_700, tmpk_700, 700*units.hPa, dx, dy)

                # Compute the divergence of the Q-vectors calculated above
                q_div = -2*mpcalc.divergence(uqvect, vqvect, dx, dy, dim_order='yx')

                ## smooth it too
                q_div = ndimage.gaussian_filter(q_div, sigma=4, order=0) * units('meter/(kilogram second)')

                #Map Creation

                print('plotting 700 q-vectors')

                # Set Projection of Data
                datacrs = ccrs.PlateCarree()

                # Set Projection of Plot
def metpy_temp_adv(fname, plevels, tidx):

    ds = xr.open_dataset(fname).metpy.parse_cf().squeeze()
    ds = ds.isel(Time=tidx)
    print(ds)

    dx, dy = mpcalc.lat_lon_grid_deltas(ds.lon.values * units('degrees_E'),
                                        ds.lat.values * units('degrees_N'))

    plevels_unit = plevels * units.hPa

    ds1 = xr.Dataset()

    p = units.Quantity(to_np(ds.p), 'hPa')
    z = units.Quantity(to_np(ds.z), 'meter')
    u = units.Quantity(to_np(ds.u), 'm/s')
    v = units.Quantity(to_np(ds.v), 'm/s')
    w = units.Quantity(to_np(ds.w), 'm/s')
    tk = units.Quantity(to_np(ds.tk), 'kelvin')
    th = units.Quantity(to_np(ds.th), 'kelvin')
    eth = units.Quantity(to_np(ds.eth), 'kelvin')
    wspd = units.Quantity(to_np(ds.wspd), 'm/s')
    omega = units.Quantity(to_np(ds.omega), 'Pa/s')
    z, u, v, w, tk, th, eth, wspd, omega = log_interpolate_1d(plevels_unit,
                                                              p,
                                                              z,
                                                              u,
                                                              v,
                                                              w,
                                                              tk,
                                                              th,
                                                              eth,
                                                              wspd,
                                                              omega,
                                                              axis=0)

    coords, dims = [plevs, ds.lat.values,
                    ds.lon.values], ["level", "lat", "lon"]
    for name, var in zip(
        ['z', 'u', 'v', 'w', 'tk', 'th', 'eth', 'wspd', 'omega'],
        [z, u, v, w, tk, th, eth, wspd, omega]):
        #g = ndimage.gaussian_filter(var, sigma=3, order=0)
        ds1[name] = xr.DataArray(to_np(var), coords=coords, dims=dims)

    # Calculate temperature advection using metpy function
    for i, plev in enumerate(plevs):

        uqvect, vqvect = mpcalc.q_vector(u[i, :, :], v[i, :, :], th[i, :, :],
                                         plev * units.hPa, dx, dy)
        #uqvect, vqvect = mpcalc.q_vector(u[i,:,:], v[i,:,:], th.to('degC')[i,:,:], plev*units.hPa, dx, dy)
        q_div = -2 * mpcalc.divergence(uqvect, vqvect, dx, dy, dim_order='yx')
        ds1['uq_{:03d}'.format(plev)] = xr.DataArray(
            np.array(uqvect),
            coords=[ds.lat.values, ds.lon.values],
            dims=["lat", "lon"])
        ds1['vq_{:03d}'.format(plev)] = xr.DataArray(
            np.array(vqvect),
            coords=[ds.lat.values, ds.lon.values],
            dims=["lat", "lon"])
        ds1['q_div_{:03d}'.format(plev)] = xr.DataArray(
            np.array(q_div),
            coords=[ds.lat.values, ds.lon.values],
            dims=["lat", "lon"])

        #        adv = mpcalc.advection(tk[i,:,:], [u[i,:,:], v[i,:,:]], (dx, dy), dim_order='yx') * units('K/sec')
        #        adv = ndimage.gaussian_filter(adv, sigma=3, order=0) * units('K/sec')
        #        ds1['tk_adv_{:03d}'.format(plev)] = xr.DataArray(np.array(adv), coords=[ds.lat.values,ds.lon.values], dims=["lat","lon"])
        #
        #        adv = mpcalc.advection(th[i,:,:], [u[i,:,:], v[i,:,:]], (dx, dy), dim_order='yx') * units('K/sec')
        #        adv = ndimage.gaussian_filter(adv, sigma=3, order=0) * units('K/sec')
        #        ds1['th_adv_{:03d}'.format(plev)] = xr.DataArray(np.array(adv), coords=[ds.lat.values,ds.lon.values], dims=["lat","lon"])
        #
        adv = mpcalc.advection(eth[i, :, :], [u[i, :, :], v[i, :, :]],
                               (dx, dy),
                               dim_order='yx') * units('K/sec')
        adv = ndimage.gaussian_filter(adv, sigma=3, order=0) * units('K/sec')
        ds1['eth_adv_{:03d}'.format(plev)] = xr.DataArray(
            np.array(adv),
            coords=[ds.lat.values, ds.lon.values],
            dims=["lat", "lon"])

        div = mpcalc.divergence(u[i, :, :], v[i, :, :], dx, dy, dim_order='yx')
        div = ndimage.gaussian_filter(div, sigma=3, order=0) * units('1/sec')
        ds1['div_{:03d}'.format(plev)] = xr.DataArray(
            np.array(div),
            coords=[ds.lat.values, ds.lon.values],
            dims=["lat", "lon"])

    ds1['Time'] = ds.Time
    eth2 = mpcalc.equivalent_potential_temperature(
        ds.slp.values * units.hPa, ds.t2m.values * units('K'),
        ds.td2.values * units('celsius'))
    ds1['eth2'] = xr.DataArray(eth2,
                               coords=[ds.lat.values, ds.lon.values],
                               dims=["lat", "lon"])
    ds1['sst'] = xr.DataArray(
        ndimage.gaussian_filter(ds.sst.values, sigma=3, order=0) - 273.15,
        coords=[ds.lat.values, ds.lon.values],
        dims=["lat", "lon"])
    ds1['t2m'] = xr.DataArray(ds.t2m.values,
                              coords=[ds.lat.values, ds.lon.values],
                              dims=["lat", "lon"])
    ds1['th2'] = xr.DataArray(ds.th2.values,
                              coords=[ds.lat.values, ds.lon.values],
                              dims=["lat", "lon"])
    ds1['mask'] = xr.DataArray(ds.mask.values,
                               coords=[ds.lat.values, ds.lon.values],
                               dims=["lat", "lon"])

    ds1['u10'] = xr.DataArray(ds.u10.values,
                              coords=[ds.lat.values, ds.lon.values],
                              dims=["lat", "lon"])
    ds1['v10'] = xr.DataArray(ds.v10.values,
                              coords=[ds.lat.values, ds.lon.values],
                              dims=["lat", "lon"])
    ds1['slp'] = xr.DataArray(ds.slp.values,
                              coords=[ds.lat.values, ds.lon.values],
                              dims=["lat", "lon"])
    ds1['rain'] = xr.DataArray(ds.rain.values,
                               coords=[ds.lat.values, ds.lon.values],
                               dims=["lat", "lon"])
    ds1['accrain'] = xr.DataArray(ds.accrain.values,
                                  coords=[ds.lat.values, ds.lon.values],
                                  dims=["lat", "lon"])
    #ds1['latent'] = xr.DataArray(ds.latent.values, coords=[ds.lat.values,ds.lon.values], dims=["lat","lon"])
    #ds1['acclatent'] = xr.DataArray(ds.acclatent.values, coords=[ds.lat.values,ds.lon.values], dims=["lat","lon"])

    return ds1
Ejemplo n.º 5
0
vtime = ds.time.data[0].astype('datetime64[ms]').astype('O')

######################################################################
# Compute Q-vectors
# -----------------
#
# Use the MetPy module to compute Q-vectors from requisite data and
# additionally compute the Q-vector divergence (and multiply by -2) to
# calculate the right hand side forcing of the Q-G Omega equation.
#

# Compute grid spacings for data
dx, dy = mpcalc.lat_lon_grid_deltas(lons, lats)

# Compute the Q-vector components
uqvect, vqvect = mpcalc.q_vector(uwnd_850, vwnd_850, tmpk_850, 850 * units.hPa,
                                 dx, dy)

# Compute the divergence of the Q-vectors calculated above
q_div = -2 * mpcalc.divergence(uqvect, vqvect, dx, dy, dim_order='yx')

######################################################################
# Plot Data
# ---------
#
# Use Cartopy to plot data on a map using a Lambert Conformal projection.
#

# Set the map projection (how the data will be displayed)
mapcrs = ccrs.LambertConformal(central_longitude=-100,
                               central_latitude=35,
                               standard_parallels=(30, 60))