Ejemplo n.º 1
0
def test_temperature_from_potential_temperature():
    """Test temperature_from_potential_temperature calculation."""
    theta = np.array([286.12859679, 288.22362587, 290.31865495, 292.41368403]) * units.kelvin
    pres = np.array([850] * 4) * units.mbar
    real_t = np.array([273.15, 275.15, 277.15, 279.15]) * units.kelvin
    assert_array_almost_equal(temperature_from_potential_temperature(pres, theta),
                              real_t, 2)
Ejemplo n.º 2
0
def test(type):
    """Run a single benchmark test for computation of meteorological fields
    across a forecast ensemble.

    Parameters
    ----------
    type : str
        The type of array to test; either 'numpy' or 'dask'.

    Returns
    -------
    tuple of floats
        The total wall and process times.
    """
    refpath = Path("/lustre/scratch/rmanser/wrfref/wrfoutREFd02")
    mempath = Path("/lustre/scratch/rmanser/test_ens/2016052812/")

    ref = xr.open_dataset(refpath)
    # All members are loaded implicitly as dask arrays, regardless of `type`
    members = xr.open_mfdataset(
        mempath.glob("mem*/wrfout_d02_2016-05-30_12:00:00"),
        concat_dim='members',
        combine='nested',
    )

    # For dask arrays, we select the individual variable dask arrays
    if type == 'dask':
        pressure = (members.P + ref.PB).data * units(ref.PB.units)
        theta = (members.T + ref.T00).data * units(ref.T00.units)
        mixing_ratio = members.QVAPOR.data * units('dimensionless')

    # For numpy arrays, we force variable arrays to be loaded into memory
    elif type == 'numpy':
        pressure = (members.P + ref.PB).values * units(ref.PB.units)
        theta = (members.T + ref.T00).values * units(ref.T00.units)
        mixing_ratio = members.QVAPOR.values * units('dimensionless')

    start_wall = time.time()
    start_proc = time.process_time()

    temperature = mpcalc.temperature_from_potential_temperature(
        pressure, theta)

    relative_humidity = mpcalc.relative_humidity_from_mixing_ratio(
        mixing_ratio, temperature, pressure)

    # We don't call metpy's function here because it implicitly triggers
    # a dask.compute() call
    dewpoint = dewpoint_from_relative_humidity(temperature, relative_humidity)

    if type == 'dask':
        td = dewpoint.compute()

    end_wall = time.time()
    end_proc = time.process_time()

    total_wall = end_wall - start_wall
    total_proc = end_proc - start_proc

    return total_wall, total_proc
Ejemplo n.º 3
0
def test_temperature_from_potential_temperature():
    """Test temperature_from_potential_temperature calculation."""
    theta = np.array([286.12859679, 288.22362587, 290.31865495, 292.41368403]) * units.kelvin
    pres = np.array([850] * 4) * units.mbar
    real_t = np.array([273.15, 275.15, 277.15, 279.15]) * units.kelvin
    assert_array_almost_equal(temperature_from_potential_temperature(pres, theta),
                              real_t, 2)
Ejemplo n.º 4
0
def calc_T_from_theta(theta, p):
    """
    Input :
        theta : potential temperature (K)
        p : pressure (hPa)
    Output :
        T : Temperature values 
    Function to estimate temperature from potential temperature and pressure,
    in the given dataset. This function uses MetPy's
    functions to get T:
    (i) mpcalc.temperature_from_potential_temperature()
    
    """
    T = (mpcalc.temperature_from_potential_temperature(
        p * units.hPa,
        theta * units.kelvin,
    ).magnitude - 273.15)

    return T
Ejemplo n.º 5
0
def calc_T_from_theta(dataset):
    """
    Input :

        dataset : Dataset

    Output :

        T : Temperature values 

    Function to estimate temperature from potential temperature and pressure,
    in the given dataset. This function uses MetPy's
    functions to get T:

    (i) mpcalc.temperature_from_potential_temperature()
    
    """
    ta = mpcalc.temperature_from_potential_temperature(
        dataset.p.values * units.Pa,
        dataset.theta.values * units.kelvin,
    ).magnitude

    return ta