Ejemplo n.º 1
0
def test_order_edges():
    r"""Test order edges of polygon function."""
    edges = [[1, 2], [5, 6], [4, 5], [2, 3], [6, 1], [3, 4]]

    truth = [[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 1]]

    assert_array_equal(truth, order_edges(edges))
Ejemplo n.º 2
0
def test_order_edges():
    r"""Test order edges of polygon function."""
    edges = [[1, 2], [5, 6], [4, 5], [2, 3], [6, 1], [3, 4]]

    truth = [[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 1]]

    assert_array_equal(truth, order_edges(edges))
Ejemplo n.º 3
0
def nn_point(xp, yp, variable, grid_loc, tri, neighbors, triangle_info):
    r"""Generate a natural neighbor interpolation of the given
    observations to the given point using the Liang and Hale (2010)
    approach. The interpolation will fail if the grid point has no
    natural neighbors.

    Liang, Luming, and Dave Hale. A stable and fast implementation
    of natural neighbor interpolation. (2010).

    Parameters
    ----------
    xp: (N, ) ndarray
        x-coordinates of observations
    yp: (N, ) ndarray
        y-coordinates of observations
    variable: (N, ) ndarray
        observation values associated with (xp, yp) pairs.
        IE, variable[i] is a unique observation at (xp[i], yp[i])
    grid_loc: (N, 2) ndarray
        Coordinates of the grid point at which to calculate the
        interpolation.
    tri: object
        Delaunay triangulation of the observations.
    neighbors: (N, ) ndarray
        Simplex codes of the grid point's natural neighbors. The codes
        will correspond to codes in the triangulation.
    triangle_info: dictionary
        Pre-calculated triangle attributes for quick look ups. Requires
        items 'cc' (circumcenters) and 'r' (radii) to be associated with
        each simplex code key from the delaunay triangulation.

    Returns
    -------
    value: float
       Interpolated value for the grid location
    """

    edges = triangles.find_local_boundary(tri, neighbors)
    edge_vertices = [segment[0] for segment in polygons.order_edges(edges)]
    num_vertices = len(edge_vertices)

    p1 = edge_vertices[0]
    p2 = edge_vertices[1]

    polygon = list()
    c1 = triangles.circumcenter(grid_loc, tri.points[p1], tri.points[p2])
    polygon.append(c1)

    area_list = []
    total_area = 0.0

    for i in range(num_vertices):

        p3 = edge_vertices[(i + 2) % num_vertices]

        try:

            c2 = triangles.circumcenter(grid_loc, tri.points[p3],
                                        tri.points[p2])
            polygon.append(c2)

            for check_tri in neighbors:
                if p2 in tri.simplices[check_tri]:
                    polygon.append(triangle_info[check_tri]['cc'])

            pts = [polygon[i] for i in ConvexHull(polygon).vertices]
            value = variable[(tri.points[p2][0] == xp)
                             & (tri.points[p2][1] == yp)]

            cur_area = polygons.area(pts)

            total_area += cur_area

            area_list.append(cur_area * value[0])

        except (ZeroDivisionError, qhull.QhullError) as e:
            message = ('Error during processing of a grid. '
                       'Interpolation will continue but be mindful '
                       'of errors in output. ') + str(e)

            warnings.warn(message)
            return np.nan

        polygon = list()
        polygon.append(c2)

        p2 = p3

    return sum([x / total_area for x in area_list])