Ejemplo n.º 1
0
    def build_optimizer(self):
        print('Building chamfer distance loss and emd loss optimizer...')
        self.optimizer = tf.train.AdamOptimizer(3e-5)
        dist1 = {}
        dist2 = {}
        match = {}

        dist1_mid, idx1, dist2_mid, idx2 = nn_distance(self.pcl_gt[16384],
                                                       self.mid)
        self.mid_loss = (tf.reduce_mean(dist1_mid) + tf.reduce_mean(dist2_mid))

        for stage in self.hierarchies:
            dist1[stage], _idx1, dist2[stage], _idx2 = nn_distance(
                self.pcl_gt[stage], self.out[stage])
            self.cd_loss_pu[stage] = tf.reduce_mean(
                dist1[stage]) + tf.reduce_mean(dist2[stage])
            if stage == 1024:
                match[stage] = approx_match(self.pcl_gt[stage],
                                            self.out[stage])
                self.emd_loss_pu[stage] = tf.reduce_mean(
                    match_cost(self.pcl_gt[stage], self.out[stage],
                               match[stage]))
        self.train_loss = 0.5 * (self.cd_loss_pu[1024] +
                                 self.emd_loss_pu[1024] /
                                 1000) + self.mid_loss + self.cd_loss_pu[16384]
        self.cd_loss = self.cd_loss_pu[16384]
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        with tf.control_dependencies(update_ops):
            self.opt_op = self.optimizer.minimize(self.train_loss)
Ejemplo n.º 2
0
 def build_optimizer_multi(self):
     print('Building chamfer distance loss optimizer...')
     self.optimizer = tf.train.AdamOptimizer(3e-5)
     dist1, idx1, dist2, idx2 = nn_distance(self.gt, self.mid)
     train_loss = (tf.reduce_mean(dist1) + tf.reduce_mean(dist2)) * 10000
     dist1, idx1, dist2, idx2 = nn_distance(self.gt, self.pred)
     self.train_loss = train_loss + (tf.reduce_mean(dist1) +
                                     tf.reduce_mean(dist2)) * 10000
     self.cd_loss = tf.reduce_mean(dist1) + tf.reduce_mean(dist2)
     update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
     with tf.control_dependencies(update_ops):
         self.opt_op = self.optimizer.minimize(self.train_loss)
Ejemplo n.º 3
0
 def build_optimizer(self):
     print('Building chamfer distance loss optimizer...')
     self.optimizer = tf.train.AdamOptimizer(3e-5)
     dist1, idx1, dist2, idx2 = nn_distance(self.gt, self.pred)
     self.train_loss = (tf.reduce_mean(dist1) +
                        0.55 * tf.reduce_mean(dist2)) * 10000
     self.cd_loss = tf.reduce_mean(dist1) + tf.reduce_mean(dist2)
     self.opt_op = self.optimizer.minimize(self.train_loss)
Ejemplo n.º 4
0
 def build_loss_calculater(self):
     if self.mode == 'test':
         self.gt, self.pred = scale(self.gt, self.pred)
     #cd
     dist1, idx1, dist2, idx2 = nn_distance(self.gt, self.pred)
     self.cd_loss = tf.reduce_mean(dist1) + tf.reduce_mean(dist2)
     #emd
     match = approx_match(self.pred, self.gt)
     # self.emd_loss = tf.reduce_mean(match_cost(self.gt, self.pred, match)) / float(tf.shape(self.pred)[1])
     self.emd_loss = tf.reduce_mean(match_cost(self.pred, self.gt, match))
Ejemplo n.º 5
0
    def build_optimizer(self):
        print('Building chamfer distance loss optimizer...')

        self.optimizer = tf.train.AdamOptimizer(3e-5)
        dist1, idx1, dist2, idx2 = nn_distance(self.gt, self.pred)
        loss_nodecay = (tf.reduce_mean(dist1) +
                        0.55 * tf.reduce_mean(dist2)) * 10000
        self.train_loss = loss_nodecay + tf.add_n(
            tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) * 0.1
        self.cd_loss = tf.reduce_mean(dist1) + tf.reduce_mean(dist2)
        self.opt_op = self.optimizer.minimize(self.train_loss)
Ejemplo n.º 6
0
    def build_loss(self):

        self.scaled_gt, self.scaled_pred = scale(self.gt, self.pred)

        #cd
        dist1, idx1, dist2, idx2 = nn_distance(self.scaled_gt,
                                               self.scaled_pred)
        self.cd_loss = tf.reduce_mean(dist1) + tf.reduce_mean(dist2)
        #emd
        match = approx_match(self.scaled_pred, self.scaled_gt)
        # self.emd_loss = tf.reduce_mean(match_cost(self.gt, self.pred, match)) / float(tf.shape(self.pred)[1])
        self.emd_loss = tf.reduce_mean(
            match_cost(self.scaled_pred, self.scaled_gt, match))
Ejemplo n.º 7
0
    def build_loss(self):
        # self.ph_pred = tf.placeholder(tf.float32, shape = (None, 1024, 3), name = 'ph_pred')
        # self.ph_gt = tf.placeholder(tf.float32, shape = (None, 16384, 3), name = 'ph_gt')
        # self.ph_pred2 = tf.placeholder(tf.float32, shape = (None, 1024, 3), name = 'ph_pred2')
        # self.ph_gt2 = tf.placeholder(tf.float32, shape = (None, 1024, 3), name = 'ph_gt2')

        self.scaled_gt, self.scaled_pred = scale(self.gt, self.pred)

        #cd
        dist1, idx1, dist2, idx2 = nn_distance(self.scaled_gt,
                                               self.scaled_pred)
        self.cd_loss = tf.reduce_mean(dist1) + tf.reduce_mean(dist2)
        #emd
        match = approx_match(self.scaled_pred, self.scaled_gt)
        # self.emd_loss = tf.reduce_mean(match_cost(self.gt, self.pred, match)) / float(tf.shape(self.pred)[1])
        self.emd_loss = tf.reduce_mean(
            match_cost(self.scaled_pred, self.scaled_gt, match))